МАТЕМАТИКА ЕГЭ 2012

Системы неравенств с одной переменной (типовые задания С3)

Корянов А.Г.

Прокофьев А.А. – доктор педагогических наук, заведующий кафедрой высшей математики №1 НИУ МИЭТ, учитель математики ГОУ лицей №1557 г. Зеленограда; e-mail: aaprokof@yandex.ru

Корянов А.Г. – методист по математике городского информационнометодического Центра (ГИМЦ) г. Брянска, учитель математики МОУ лицей №27 г. Брянска; e-mail: <u>akoryanov@mail.ru</u>

СОДЕРЖАНИЕ	стр.
Введение	î
1. Сравнение числовых выражений	3
1.1. Методы сравнения числовых	
выражений	3
1.2. Сравнение действительных чисел	5
1.3. Сравнение выражений, содержа-	
щих дроби	5
1.4. Сравнение выражений, содержа-	
щих степени	6
1.5. Сравнение выражений, содер-	
жащих корни натуральной степе-	
ни	7
1.6. Сравнение выражений, содержа-	
щих логарифмы	8
1.7. Сравнение выражений разного	
вида	10
2. Область определения выраже-	
ния (функции)	11
3. Решение показательных и лога-	
рифмических неравенств	12
3.1. Показательные неравенства	12
3.2. Логарифмические неравенства	14
3.3. Смешанные неравенства	17
4. Системы неравенств	19
Ответы	26
Список и источники литературы	28

Введение.

Прежде чем перейти к рассмотрению неравенств, остановимся на некоторых важных вопросах, имеющих непосредственное отношение к решению этих неравенств.

область определения выражения

Основные ограничения на переменную, входящую в выражение, связаны с действием деления (деление на нуль не определено), действием извлечения корня четной степени (корень четной степени определен для неотрицательных чисел), действием нахождения логарифма (логарифм с положительным основанием, отличным от единицы, определен для положительных чисел).

Из определения корня натуральной степени следует, что выражения вида $\sqrt[6]{-4}$, $\sqrt[-2]{5}$, $\sqrt[9]{8}$ не определены.

Из определения логарифма следует, что выражения вида $\log_3(-4)$, $\log_7 0$, $\log_{-6} 5$, $\log_0 9$, $\log_1 15$ не определены.

Отметим, что решение неравенств с переменной включает в себя нахождение области определения данного неравенства или по-другому — области допустимых значений неизвестной неравенства.

следствие и равносильность

Если множество решений неравенства A принадлежит множеству решений неравенства (системы, совокупности) B, то неравенство (система, совокупность) B называется следствием неравенства A, и это обозначают $A \Rightarrow B$.

Если множества решений неравенства A и неравенства (системы, совокупности) B совпадают, то эти неравенства (неравенство и система, неравенство и совокупность) называются равносильными, и это обозначают $A \Leftrightarrow B$.

Как правило, преобразования используют для того, чтобы в неравенстве освободиться от знаменателей, от знаков корней, от знаков модуля, от степеней, от знаков логарифма, и привести данное неравенство к более простым неравенствам. При этом выполняют преобразования над обеими частями неравенства, используя свойство монотонности соответствующей функции, или преобразования отдельных выражений, входящих в неравенство, применяя формулы. Применение формулы для замены одного выражения другим может оказаться неравносильным для неравенства.

Приведем примеры равносильных переходов.

1)
$$\log_3 x > 1 \Leftrightarrow \log_3 x > \log_3 3 \Leftrightarrow x > 3$$
.

2)
$$(x-1)\log_3 x \ge 0 \Leftrightarrow$$

$$\begin{cases} \begin{cases} x-1 \ge 0, \\ \log_3 x \ge 0 \end{cases} \\ \begin{cases} x-1 \le 0, \\ \log_3 x \le 0. \end{cases} \end{cases}$$

3)
$$\lg(x-2) + \lg(27-x) \le 2 \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} x-2 > 0, \\ 27 - x > 0, \\ \lg((x-2)(27 - x)) \le 2. \end{cases}$$

4)
$$\sqrt{x+2} \le x \Leftrightarrow \begin{cases} x \ge 0, \\ x+2 \ge 0, \\ x+2 \le x^2. \end{cases}$$

системы неравенств и совокупности неравенств

Решение неравенства с использованием равносильных преобразований часто приводит к решению системы или совокупности неравенств.

При решении системы неравенств с одной переменной обычно решают каждое неравенство, затем находят пересечение полученных множеств решений.

При решении совокупности неравенств с одной переменной обычно решают каждое неравенство, затем находят объединение полученных множеств решений.

Две системы (совокупности) неравенств называются равносильными, если множества их решений совпадают.

Приведем примеры решения системы неравенств и совокупности неравенств.

1)
$$\begin{cases} 6x + 2 \le 4x + 24, & \Leftrightarrow \begin{cases} 2x \le 22, \\ x \ge 8 \end{cases} \Leftrightarrow \\ \Leftrightarrow \begin{cases} x \le 11, \\ x \ge 8 \end{cases} \Leftrightarrow 8 \le x \le 11. \end{cases}$$
2)
$$\begin{bmatrix} x^2 - 4 > 0, & \Leftrightarrow \\ x - 6 < 0 \end{cases} \Leftrightarrow \begin{bmatrix} (x - 2)(x + 2) > 0, \\ x < 6 \end{cases} \Leftrightarrow \begin{bmatrix} x < -2, \\ x > 2, & \Leftrightarrow -\infty < x < +\infty. \\ x < 6 \end{cases}$$

сравнение чисел

Иногда при решении неравенств одним из трудоемких этапов является сравнение значений чисел для правильного расположения их относительно друг друга на числовой прямой. Это возникает в случае объединения или пересечения промежутков, числовые значения концов которых выражаются через радикалы, логарифмы и т.д. Приходится сталкиваться с необходимостью сравнения чисел без помощи микрокалькулятора. Рассмотрим некоторые подходы к решению задач такого типа.

1. Сравнение числовых выражений

При решении различных неравенств и их систем на этапе получения ответа, в частности нанесения их решений на одну числовую прямую, приходится сравнивать числовые значения, соответствующие концам промежутков, из которых состоят соответствующие множества решений. Довольно часто подобное сравнение является не очевидным и представляет ключевой этап решения задачи. На помощь приходит использование свойств числовых неравенств (к обеим частям можно прибавлять одно и то же число; можно умножать обе части неравенства на положительное число и т.д.), а также некоторые специальные приемы.

Здесь не требуется находить значения чисел с точностью до определенного десятичного знака после запятой. Но с другой стороны, для старшеклассника считается известным десятичные знаки после запятой некоторых чисел ($\sqrt{2}$ = 1,41...; $\sqrt{3}$ = 1,73...; e = 2,71...; π = 3,14...), которые он вправе использовать при сравнении чисел, точно так же, как знание степеней некоторых чисел (11^2 = 121; 6^3 = 216; 2^{10} = 1024 и т.д.).

1.1. Методы сравнения числовых выражений

При сравнении числовых выражений A и B используют следующие общие методы.

метод сравнения с нулем разности выражений

В этом случае сравнивают разность выражений с нулем.

Если
$$A-B>0$$
, то $A>B$; если $A-B=0$, то $A=B$; если $A-B<0$, то $A.$

Пример 1. Сравнить числа $\frac{1}{\sqrt{6}} - 1 \ u - \frac{4}{5}$.

Решение. Найдем разность

$$\frac{1}{\sqrt{6}} - 1 - \left(-\frac{4}{5}\right) = \frac{1}{\sqrt{6}} - \frac{1}{5} = \frac{5 - \sqrt{6}}{5\sqrt{6}}.$$

Так как
$$5-\sqrt{6}=\sqrt{25}-\sqrt{6}>0$$
 и $5\sqrt{6}>0$, то $\frac{5-\sqrt{6}}{5\sqrt{6}}>0$ и $\frac{1}{\sqrt{6}}-1>-\frac{4}{5}$.
Ответ: $\frac{1}{\sqrt{6}}-1>-\frac{4}{5}$.

метод сравнения с единицей отношения выражений

Если выражения A и B положительны, то для определения большего из них можно сравнить их отношение с единицей.

Если
$$\frac{A}{B} > 1$$
, то $A > B$;
если $\frac{A}{B} = 1$, то $A = B$;
если $\frac{A}{B} < 1$, то $A < B$.

Пример 2. Сравнить числа

$$\frac{2^{2010}+1}{2^{2011}+1} u \frac{2^{2011}+1}{2^{2012}+1}.$$

Решение. Пусть A — первое выражение, а B — второе. Поскольку они оба положительны, то рассмотрим их частное

$$\frac{A}{B} = \frac{2^{2010} + 1}{2^{2011} + 1} : \frac{2^{2011} + 1}{2^{2012} + 1} = \frac{2^{4022} + 5 \cdot 2^{2010} + 1}{2^{4022} + 4 \cdot 2^{2010} + 1}.$$

Так как числитель получившейся дроби больше знаменателя, то $\frac{A}{B} > 1$. Отсюда следует, что A > B.

Ответ:
$$\frac{2^{2010}+1}{2^{2011}+1} > \frac{2^{2011}+1}{2^{2012}+1}$$
.

метод разделения выражений

Если удается показать, что одно из сравниваемых выражений больше некоторого числа (или выражения), а другое наоборот меньше него, то первое выражение будет больше второго, т.е. из неравенств A > C > B следует неравенство A > B.

Пример 3. *Сравнить числа* $\log_2 5$ *и* $\log_3 6$.

Решение. Заметим, что $\log_2 5 > \log_2 4 = 2$, а $\log_3 6 < \log_3 9 = 2$. Следовательно, имеем

$$\log_2 5 > 2 > \log_3 6 \Leftrightarrow \log_2 5 > \log_3 6$$
.

Ответ: $\log_{3} 5 > \log_{3} 6$.

метод использования параметра

Пример 4. Сравнить числа $\sqrt[3]{60}$ и $2 + \sqrt[3]{7}$.

Решение. Представим первое число следующим образом. $\sqrt[3]{60} = \sqrt[3]{4(8+7)}$. Пусть a=2 и $b=\sqrt[3]{7}$. Сравним выражения:

$$\sqrt[3]{4(a^3+b^3)} \lor a+b \Leftrightarrow$$

$$\Leftrightarrow 4(a^3+b^3) \lor (a+b)^3 \Leftrightarrow$$

$$\Leftrightarrow 3(a^3+b^3) \lor 3ab(a+b) \Leftrightarrow$$

$$\Leftrightarrow a^2-ab+b^2 \lor ab \Leftrightarrow (a-b)^2 \lor 0.$$

Так как $a \neq b$, то $(a-b)^2 > 0$ и тогда $\sqrt[3]{60} > 2 + \sqrt[3]{7}$.

Ответ:
$$\sqrt[3]{60} > 2 + \sqrt[3]{7}$$
.

метод использования свойств функций

В этом случае для сравнения выражений используют монотонность и выпуклость функций на промежутках.

Пример 5. Сравнить числа e^{π} и π^{e} .

Решение. Заметим, что

$$e^{\pi} \vee \pi^{e} \iff \ln e^{\pi} \vee \ln \pi^{e} \iff \\ \iff \pi \ln e \vee e \ln \pi \iff \frac{\ln e}{e} \vee \frac{\ln \pi}{\pi}.$$

Рассмотрим функцию $f(x) = \frac{\ln x}{x}$ и сравним числа f(e) и $f(\pi)$. Функция f(x) определена при x>0. Ее производная равна $f'(x) = \frac{1-\ln x}{x^2}$. Так как f'(x) = 0 при x=e, f'(x)>0 при 0< x<e и f'(x)<0 при x>e, то функция при x=e принимает наибольшее значение на всей области определения. Значит, $f(e)>f(\pi)$, откуда следует, что $e^{\pi}>\pi^e$.

Ответ: $e^{\pi} > \pi^e$.

графический метод

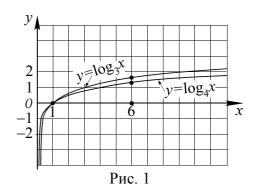
Графический метод удобно использовать при сравнении двух выражений, которые частично одинаковы (равные показатели степеней, равные основания степе-

ней, равные показатели корней, равные подкоренные числа, равные основания логарифмов, равные подлогарифмические числа и т.д.).

Пример 6. *Сравнить числа* $\log_3 6$ *и* $\log_4 6$.

Решение. Построим схематично графики функций $y = \log_3 x$ и $y = \log_4 x$ (рис. 1).

Сравнивая значения функций при x = 6, получаем $\log_3 6 > \log_4 6$.



Ответ: $\log_{3} 6 > \log_{4} 6$.

метод использования классических неравенств

Обычно достаточно знания следующих классических неравенств:

неравенство Коши:

при любом $n \in \mathbb{N}$ для неотрицательных чисел a_1, a_2, \dots, a_n

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 \cdot a_2 \cdot \dots \cdot a_n} ;$$

неравенство между средним арифметическим и средним геометрическим неотрицательных чисел a_1 и a_2 (случай n=2 в неравенстве Kouu):

$$\frac{a_1 + a_2}{2} \ge \sqrt{a_1 a_2} ;$$

неравенство для суммы двух взаимно обратных чисел:

$$\left| a + \frac{1}{a} \right| \ge 2$$
;

неравенство Бернулли:

для любого $n \in \mathbb{N}$ при $x \ge -1$

$$(1+x)^n \ge 1 + nx.$$

Пример 7. Сравнить числа:

a)
$$\frac{1}{\log_2 5} + \frac{1}{\log_5 2} u 2;$$
 6) $\sqrt[200]{2} u 1,005.$

Решение. а) Заметим, что $\log_5 2 > 0$ и

$$\frac{1}{\log_2 5} + \frac{1}{\log_5 2} = \log_5 2 + \frac{1}{\log_5 2}.$$

Выражение в правой части равенства представляет собой сумму двух взаимно обратных положительных чисел, отличных от единицы. Значит,

$$\log_5 2 + \frac{1}{\log_5 2} > 2.$$

б) Возводя оба числа в двухсотую степень, получим:

$$\sqrt[200]{2} \vee 1,005 \Leftrightarrow 2 \vee (1,005)^{200}$$

Используя неравенство Бернулли, имеем:

$$(1,005)^{200} = (1+0,005)^{200} > 1+200 \cdot 0,005 = 2$$
.

Значит второе число больше первого.

Otbet: a)
$$\frac{1}{\log_2 5} + \frac{1}{\log_5 2} > 2$$
;

1.2. Сравнение действительных чисел

При сравнении действительных чисел используют следующие правила.

- Всякое положительное число больше нуля и больше отрицательного числа.
- Всякое отрицательное число меньше нуля.
- Из двух положительных действительных чисел больше то, у которого целая часть больше. Если целые части равны, большим считается то число, у которого первый из неравных десятичных знаков в их записи в виде десятичной дроби больший, а все предшествующие одинаковы.
- Из двух отрицательных чисел больше то, у которого абсолютная величина меньше.

Пример 8. *Сравнить числа* π , $\sqrt{10}$ *и* 3,14(15).

Решение. Так как
$$\pi = 3,14159...$$
, $\sqrt{10} = 3,16227...$ и $3,14(15) = 3,141515...$, то

видим, что совпадают целые части и цифры десятых, а цифра сотых у числа $\sqrt{10}$ больше, чем у числа π и 3,14(15). Следовательно, $\sqrt{10} > \pi$ и $\sqrt{10} > 3,14(15)$. Соответственно, у чисел π и 3,14(15) совпадают первые четыре цифры после запятой, а пятая больше у числа π . Следовательно, $\pi > 3,14(15)$.

Замечание. Данный пример приведен для раскрытия правила сравнения действительных чисел, записанных в виде бесконечных десятичных дробей до определенного знака.

Otbet:
$$\sqrt{10} > \pi > 3.14(15)$$
.

1.3. Сравнение выражений, содержащих дроби

При сравнении двух обыкновенных дробей используют следующие правила.

- Из двух дробей с одинаковыми знаменателями та дробь больше, у которой больший числитель.
- Из двух дробей с одинаковыми числителями та дробь больше, у которой знаменатель меньше.

При сравнении двух обыкновенных дробей с разными числителями и знаменателями их можно привести к общему знаменателю (или умножить обе части сравнения на общий знаменатель).

Пример 9. *Сравнить числа*
$$\frac{15}{17}$$
 u $\frac{23}{26}$.

Решение. Приводя дроби к общему знаменателю и используя первое правило, получаем

$$\frac{15}{17} \vee \frac{23}{26} \Leftrightarrow \frac{15 \cdot 26}{17 \cdot 26} \vee \frac{23 \cdot 17}{26 \cdot 17} \Leftrightarrow \Leftrightarrow 15 \cdot 26 \vee 23 \cdot 17 \Leftrightarrow 390 \vee 391.$$

Отсюда следует, что
$$\frac{15}{17} < \frac{23}{26}$$
.

Ответ:
$$\frac{15}{17} < \frac{23}{26}$$
.

Для сравнения дробей часто используют метод сравнения с нулем разности выражений или метод сравнения с единицей отношения выражений.

Пример 10. Сравнить числа
$$\frac{131}{273}$$
 и $\frac{179}{235}$.

Решение. Рассмотрим частное данных чисел

$$\frac{131}{273} : \frac{179}{235} = \frac{131}{179} \cdot \frac{235}{273} < 1,$$

так как каждая из дробей меньше 1. Значит, $\frac{131}{273} < \frac{179}{235}$.

Ответ:
$$\frac{131}{273} < \frac{179}{235}$$
.

Тренировочные упражнения

Сравните числа:

1.
$$a = \frac{8}{7}$$
 и $b = \frac{9}{7}$; **2.** $a = -\frac{6}{11}$ и $b = -\frac{7}{11}$;

3.
$$a = \frac{6}{9}$$
 и $b = -\frac{7}{9}$; **4.** $a = -\frac{13}{123}$ и $b = -\frac{13}{129}$;

5.
$$a = \frac{4}{5}$$
 и $b = \frac{5}{6}$; **6.** $a = 0$, (3) и $b = \frac{1}{3}$;

7.
$$a = \frac{124}{119}$$
 и $b = \frac{137}{129}$.

1.4. Сравнение выражений, содержащих степени

При сравнении двух степеней с одинаковыми показателями или одинаковыми основаниями, используют следующие правила.

- Если натуральное число n нечетно и a > b, то $a^n > b^n$.
- Если натуральное число n четно и a > b, то:
- а) для положительных a и b имеем $a^n > b^n$;
- б) для отрицательных a и b имеем $a^{n} < b^{n}$.
- Если a > 1 и m > n, то $a^m > a^n$.
- Если 0 < a < 1 и m > n, то $a^m < a^n$.

При сравнении двух степеней с разными показателями и основаниями обычно в них выделяют одинаковое основание или одинаковый показатель.

Пример 11. Сравнить числа:

а)
$$5^{60}$$
 u 8^{20} ; **б)** 2^{30} u 4^{14} ;
в) $2.5^{\frac{\sqrt{5}}{6}}$ и $0.4^{-0.5}$; **г)** 7^{30} и 4^{40} ; **д)** 3^{21} и 2^{31} .

Решение. a) Так как $8^{20}=2^{60}$ и 5>2, то $5^{60}>2^{60}$ и $5^{60}>8^{20}$.

- **б)** Так как $4^{14} = 2^{28}$ и 30 > 28, то $2^{30} > 2^{28}$ и $2^{30} > 4^{14}$.
 - **B)** Заметим, что $2.5^{\frac{\sqrt{5}}{6}} = \left(\frac{5}{2}\right)^{\frac{\sqrt{5}}{6}}$, а

$$0,4^{-0,5} = \left(\frac{2}{5}\right)^{-0,5} = \left(\frac{5}{2}\right)^{0,5}.$$

Теперь сравним показатели степени $\frac{\sqrt{5}}{6}$ и 0,5. Так как $\sqrt{5} < 3$, то $\frac{\sqrt{5}}{6} < \frac{3}{6} = 0,5$. Следовательно,

$$\left(\frac{5}{2}\right)^{\frac{\sqrt{5}}{6}} < \left(\frac{5}{2}\right)^{0.5}$$
, T.e. $2.5^{\frac{\sqrt{5}}{6}} < 0.4^{-0.5}$.

г) 1-й способ. Заметим, что $7^{30}=(7^3)^{10}=343^{10}$ и $4^{40}=(4^4)^{10}=256^{10}$. Так как 343>256, то из свойств степеней следует $343^{10}>256^{10}$ или $7^{30}>4^{40}$.

2-й способ. Представим степень 7^{30} как степень с основанием 4. В силу основного логарифмического тождества $7=4^{\log_47}$. Поэтому $7^{30}=4^{30\cdot\log_47}$. Теперь сравним число $30\cdot\log_47$ с числом 40. Учитывая свойство возрастающей функции $y=\log_4t$, имеем

$$30 \cdot \log_4 7 = 10 \cdot \log_4 7^3 = 10 \cdot \log_4 343 >$$

> $10 \cdot \log_4 256 = 40$.

Следовательно, в силу того, что функция $y = 4^t$ возрастающая (или в силу свойства степеней), получим $7^{30} > 4^{40}$.

д) Имеем

$$3^{21} = 3^{20} \cdot 3 = 9^{10} \cdot 3$$

И

$$2^{31} = 2^{30} \cdot 2 = 8^{10} \cdot 2 \; .$$

Так как $9^{10} > 8^{10}$ и 3 > 2, то $9^{10} \cdot 3 > 8^{10} \cdot 2$ и $3^{21} > 2^{31}$.

Ответ: a)
$$5^{60} > 8^{20}$$
; **б)** $2^{30} > 4^{14}$;
в) $2.5^{\frac{\sqrt{5}}{6}} < 0.4^{-0.5}$; **г)** $7^{30} > 4^{40}$;
д) $3^{21} > 2^{31}$.

Пример 12. Сравнить числа 13⁵ и 23⁴.

Решение. Воспользуемся формулой бинома Ньютона.

$$13^5 = (12+1)^5 > 12^5 + 5 \cdot 12^4 = 12^4 (12+5) =$$

= 17 \cdot 12^4 > 16 \cdot 12^4 = 2^4 \cdot 12^4 = 24^4 > 23^4.

Ответ: $13^5 > 23^4$.

Тренировочные упражнения

Сравните числа:

8.
$$a = 3^{10}$$
 и $b = 4^{10}$;

9.
$$a = -0.5^{13}$$
 и $b = -0.7^{13}$;

10.
$$a = 0.5^{10}$$
 u $b = 0.5^{20}$;

11.
$$a = 14^{15}$$
 и $b = 4^{25}$;

12.
$$a = (2\sqrt{2})^{100}$$
 и $b = 8^{49}$;

13.
$$a = 2^{300}$$
 и $b = 3^{200}$;

14.
$$a = \left(\frac{2}{3}\right)^{-\frac{\sqrt{2}}{3}}$$
 и $b = 1$;

15.
$$a = 3^{50}$$
 и $b = 6^{30}$:

16.
$$a = 3^{52}$$
 и $b = 4^{39}$.

1.5. Сравнение выражений, содержащих корни натуральной степени

При сравнении двух выражений, содержащих одинаковые корни натуральных степеней, используют следующие правила.

- Если натуральное число n>1 нечетно и a>b , то $\sqrt[n]{a}>\sqrt[n]{b}$.
- Если натуральное число n > 1 четно и a > b > 0, то $\sqrt[n]{a} > \sqrt[n]{b}$.

При сравнении двух выражений, содержащих разные корни натуральных степеней, обычно их приводят к корням с одинаковыми показателями, либо возводят в степень для избавления от корней.

Пример 13. Сравнить числа:

a)
$$\sqrt[5]{\frac{15}{16}} u \sqrt[5]{\frac{16}{17}};$$
 6) $\sqrt[12]{623} u \sqrt[3]{5}.$

Решение. а) Сравним подкоренные числа

$$\frac{15}{16} - \frac{16}{17} = \frac{15 \cdot 17 - 16 \cdot 16}{16 \cdot 17} = -\frac{1}{16 \cdot 17} < 0.$$

Отсюда следует, что

$$\frac{15}{16} < \frac{16}{17}$$
 M $\sqrt[5]{\frac{15}{16}} < \sqrt[5]{\frac{16}{17}}$.

б) По свойству арифметических корней имеем $\sqrt[12]{5^4} = \sqrt[12]{625}$. Так как 623 < 625, то

$$\sqrt[12]{623} < \sqrt[12]{625}$$
 и $\sqrt[12]{623} < \sqrt[3]{5}$.

Ответ: a)
$$\sqrt[5]{\frac{15}{16}} < \sqrt[5]{\frac{16}{17}}$$
; 6) $\sqrt[12]{623} < \sqrt[3]{5}$.

Пример 14. *Сравнить числа* $\sqrt{7} - \sqrt{5}$ *и* $\sqrt{15} - \sqrt{12}$.

Решение. Так как оба числа положительны, то можем сравнить их натуральные степени (квадраты). При этом знак сравнения не меняется.

$$\sqrt{7} - \sqrt{5} \vee \sqrt{15} - \sqrt{12} \Leftrightarrow \\ \Leftrightarrow (\sqrt{7} - \sqrt{5})^2 \vee (\sqrt{15} - \sqrt{12})^2 \Leftrightarrow \\ \Leftrightarrow 12 - 2\sqrt{35} \vee 27 - 2\sqrt{180} \Leftrightarrow \\$$

(уменьшаем теперь каждое число на 12)

$$\Leftrightarrow -2\sqrt{35} \vee 15 - 2\sqrt{180} \Leftrightarrow$$

(прибавляем к каждому из полученных чисел сумму $2\sqrt{35} + 2\sqrt{180}$)

$$\Leftrightarrow 2\sqrt{180} \vee 15 + 2\sqrt{35} \Leftrightarrow$$

(так как оба числа положительны, то сравниваем их квадраты)

$$\Leftrightarrow$$
 720 \vee 365 + 60 $\sqrt{35}$ \Leftrightarrow

(поделим оба числа на 5)

$$\Leftrightarrow 144 \lor 73 + 12\sqrt{35} \Leftrightarrow \\ \Leftrightarrow 71 \lor 12\sqrt{35} \Leftrightarrow \\$$

(еще раз возведем, полученные числа в квадрат)

$$\Leftrightarrow 71^2 \lor (12\sqrt{35})^2 \Leftrightarrow \\ \Leftrightarrow 5041 > 5040.$$

В итоге, выполнив ряд преобразований, мы получили, что знак неравенства между исходными числами тот же, что и между числами 5041 и 5040. Так как 5041 > 5040, то $\sqrt{7} - \sqrt{5} > \sqrt{15} - \sqrt{12}$.

Otbet.
$$\sqrt{7} - \sqrt{5} > \sqrt{15} - \sqrt{12}$$
.

Иногда удобно умножать сравниваемые выражения на одно и то же выражение, например, для выделения разности квадратов. Для неотрицательных чисел a и b справедлива формула

$$(\sqrt{a} - \sqrt{b}) \cdot (\sqrt{a} + \sqrt{b}) = a - b.$$

Выражения $\sqrt{a} - \sqrt{b}$ и $\sqrt{a} + \sqrt{b}$ называются *сопряженными*.

Пример 15. *Сравнить числа* $\sqrt{8} - \sqrt{6}$ *и* $\sqrt{13} - \sqrt{11}$.

Решение. Домножив и поделив каждое выражение на сопряженное к нему, получим:

$$\sqrt{8} - \sqrt{6} \vee \sqrt{13} - \sqrt{11} \Leftrightarrow \frac{(\sqrt{8} - \sqrt{6})(\sqrt{8} + \sqrt{6})}{\sqrt{8} + \sqrt{6}} \vee$$

$$\vee \frac{(\sqrt{13} - \sqrt{11})(\sqrt{13} + \sqrt{11})}{\sqrt{13} + \sqrt{11}} \Leftrightarrow$$

$$\Leftrightarrow \frac{2}{\sqrt{8} + \sqrt{6}} \vee \frac{2}{\sqrt{13} + \sqrt{11}} \Leftrightarrow$$

$$\Leftrightarrow \frac{1}{\sqrt{8} + \sqrt{6}} \vee \frac{1}{\sqrt{13} + \sqrt{11}}.$$

Знаменатель второй дроби больше, поэтому вторая дробь меньше. Соответственно получаем, что $\sqrt{8}-\sqrt{6}>\sqrt{13}-\sqrt{11}$.

Ответ.
$$\sqrt{8} - \sqrt{6} > \sqrt{13} - \sqrt{11}$$
.

Тренировочные упражнения

Сравните числа:

17.
$$a = 2\sqrt{5}$$
 и $b = \sqrt{19}$;

18.
$$a = \sqrt[3]{\frac{22}{7}}$$
 и $b = \sqrt[3]{\pi}$;

19.
$$a = \sqrt[3]{-\frac{123}{124}}$$
 и $b = \sqrt[3]{-\frac{122}{123}}$;

20.
$$a = \sqrt[8]{10}$$
 и $b = \sqrt[4]{3}$;

21.
$$a = \sqrt[4]{6 + \sqrt{20}}$$
 M $b = \sqrt{1 + \sqrt{5}}$:

22.
$$a = \sqrt{6} - \sqrt{5}$$
 и $b = \sqrt{8} - \sqrt{7}$;

23.
$$a = \sqrt{7} - \sqrt{6}$$
 и $b = \sqrt{12} - \sqrt{10}$;

24.
$$a = -3 + \sqrt{17}$$
 и $b = 5 - \sqrt{15}$.

1.6. Сравнение выражений, содержащих логарифмы

При сравнении двух выражений, содержащих логарифмы, используют следующие правила.

• Если a > 1 и M > N > 0, то

$$\log_a M > \log_a N$$
.

 \bullet Если 0 < a < 1 и M > N > 0, то

$$\log_a M < \log_a N.$$

В частности:

- **a)** Если a > 1 и M > 1, то $\log_a M > 0$.
- **б)** Если a > 1 и 0 < M < 1, то $\log_a M < 0$.
- в) Если 0 < a < 1 и M > 1, то $\log_a M < 0$.
- г) Если 0 < a < 1 и 0 < M < 1, то $\log_a M > 0$.

Пример 16. Сравнить числа:

a) $\log_2 5 \ u \log_2 \pi$; **6)** $\log_{0.5} 20 \ u \log_{0.5} 7$; **B)** $\log_2 3 \ u \log_4 5$.

Решение. a) Так как $5 > \pi$ и основание 2 > 1, то по свойству логарифмов имеем $\log_2 5 > \log_2 \pi$.

- **б)** Основание логарифмов 0 < 0.5 < 1 и 20 > 7. Поэтому $\log_{0.5} 20 < \log_{0.5} 7$.
- **в)** Так как $\log_4 5 = \log_2 \sqrt{5}$ и $3 > \sqrt{5}$, то по свойству возрастающей функции $y = \log_2 x$ имеем $\log_2 3 > \log_2 \sqrt{5}$ и $\log_2 3 > \log_4 5$.

Ответ: a)
$$\log_2 5 > \log_2 \pi$$
;
6) $\log_{0.5} 20 < \log_{0.5} 7$;
B) $\log_2 3 > \log_4 5$.

Пример 17. Сравнить числа

$$\log_2 5 u \log_3 7$$

Решение. Подберем «хорошее» число такое, которое больше одного логарифма и меньше другого. Так как функция $y = \log_2 x$ возрастающая, то $\log_2 5 > \log_2 4 = 2$. Аналогично, $\log_3 7 < \log_3 9 = 2$. Значит,

$$\log_2 5 > 2 > \log_3 7$$
 и $\log_2 5 > \log_3 7$;

Ответ: $\log_2 5 > \log_2 7$.

Пример 18. Сравнить числа

$$\log_2 3 u \log_5 8$$

Решение. (1-й способ). Так $1 < \log_2 3 < 2$ и $1 < \log_5 8 < 2$, то укрупним (удвоим) данные числа.

Имеем $2\log_2 3 = \log_2 9$ и $3 < \log_2 9 < 4$. $2\log_{5} 8 = \log_{5} 64$ 2 < log₅ 64 < 3. Отсюда следует, что

$$2\log_2 3 > 2\log_5 8$$
 и $\log_2 3 > \log_5 8$.

Решение. (2-й способ). $\log_2 3 = \log_4 9$ и по свойству функций $y = \log_t 9$ и $y = \log_5 t$ выполняется цепочка неравенств $\log_4 9 > \log_5 9 > \log_5 8$, To $\log_2 3 > \log_5 8$.

OtBet: $\log_{5} 3 > \log_{5} 8$.

Пример 19. Сравнить числа:

a)
$$\log_{0.5} 5 \ u \ \log_2 5$$
; **6)** $\log_{0.5} 7 \ u \ \log_{0.8} 7$; **B)** $\log_3 0.6 \ u \ \log_5 0.6$.

Решение. a) Так как $\log_{0.5} 5 < 0$, a $\log_2 5 > 0$, to $\log_{0.5} 5 < \log_2 5$.

б) Так как
$$\log_{0.5} 7 = \frac{1}{\log_7 0.5}$$
 и

$$\log_{0.8} 7 = \frac{1}{\log_7 0.8}$$
, a $\log_7 0.5 < \log_7 0.8 < 0$,

то
$$\frac{1}{\log_7 0.5} < \frac{1}{\log_7 0.8}$$
 и $\log_{0.5} 7 > \log_{0.8} 7$.

Замечание. Так как функция $y = \log_7 x$ на промежутке (0;1) принимает отрицательные значения и является возрастающей, то на этом же промежутке функция

$$y = \log_x 7 = \frac{1}{\log_7 x}$$
 является убывающей.

Тогда для функции $y = \log_x 7$ на промежутке (0;1) из неравенства 0,5 < 0,8 следует неравенство $\log_{0.5} 7 > \log_{0.8} 7$.

в) По свойству строго возрастающей $y = \log_{x} 0.6$ на промежутке функции $(1; +\infty)$ из неравенства 3 < 5 следует неравенство $\log_{5} 0.6 < \log_{5} 0.6$.

Ответ: a) $\log_{0.5} 5 < \log_{0.5} 5$; **б**) $\log_{0.5} 7 > \log_{0.8} 7$;

B) $\log_2 0.6 < \log_5 0.6$;

Пример 20. Сравнить числа

$$\log_{11} 12 \ u \ \log_{12} 13$$
.

Решение. Числа $\log_{11} 12$ и $\log_{12} 13$ близки друг к другу и подобрать «хорошее» число, разделяющее их, трудно.

Так как данные числа больше единицы, то «выделим» из каждого числа единицу следующим образом:

$$\log_{11} 12 = \log_{11} 11 \cdot \frac{12}{11} = 1 + \log_{11} \left(1 + \frac{1}{11} \right),$$
$$\log_{12} 13 = 1 + \log_{12} \left(1 + \frac{1}{12} \right).$$

Так как функция $y = \log_{1} t$ возрастающая, а $1 + \frac{1}{12} < 1 + \frac{1}{11}$, то

$$\log_{12}\left(1+\frac{1}{12}\right) < \log_{12}\left(1+\frac{1}{11}\right) = \frac{\log_{11}\left(1+\frac{1}{11}\right)}{\log_{11}12}.$$

Так как при a > 0 и b > 1 выполняется неравенство $\frac{a}{L} < a$, то

$$\frac{\log_{11}\left(1+\frac{1}{11}\right)}{\log_{11}12} < \log_{11}\left(1+\frac{1}{11}\right)$$

и, значит,

$$\log_{12}\left(1+\frac{1}{12}\right) < \log_{11}\left(1+\frac{1}{11}\right)$$

и $\log_{12} 13 < \log_{11} 12$.

Замечание. «Выделение» единицы из данных чисел можно заменить вычитанием из каждого числа единицы:

$$\log_{11} 12 - 1 = \log_{11} 12 - \log_{11} 11 = \log_{11} \frac{12}{11}$$
,

$$\log_{12} 13 - 1 = \log_{12} 13 - \log_{12} 12 = \log_{12} \frac{13}{12}$$
.

Ответ: $\log_{12} 13 < \log_{11} 12$.

Пример 21. Сравнить числа:

$$\log_2 3 \ u \log_3 4$$
.

Решение. (1-й способ). Так как число log₂ 3 положительное, то проведем равносильные преобразования над обеими частями неравенства

$$\log_2 3 \vee \log_3 4 \Leftrightarrow \log_2 3 \vee \frac{2}{\log_2 3} \Leftrightarrow$$
$$\Leftrightarrow (\log_2 3)^2 \vee 2 \Leftrightarrow \log_2 3 \vee \sqrt{2}.$$

Из следующей цепочки сравнений

$$\log_2 3 = \log_2 \sqrt{9} > \log_2 \sqrt{8} =$$
$$= 1.5 = \sqrt{2.25} > \sqrt{2}$$

получаем, что $\log_2 3 > \log_3 4$.

Решение (2-й способ). Используем неравенство Коши:

$$\begin{split} \frac{\log_3 4}{\log_2 3} &= \log_3 4 \cdot \log_3 2 \le \\ &\le \left(\frac{\log_3 4 + \log_3 2}{2}\right)^2 = \left(\frac{\log_3 8}{2}\right)^2. \end{split}$$

Так как
$$8 < 9$$
, то $\frac{\log_3 8}{2} < 1$ и $\left(\frac{\log_3 8}{2}\right)^2 < 1$. Значит, $\frac{\log_3 4}{\log_2 3} < 1$ и $\log_2 3 > \log_3 4$, учитывая, что $\log_2 3$ и $\log_3 4$ – положительные числа.

Otbet: $\log_2 3 > \log_3 4$.

Тренировочные упражнения

Сравните числа:

25.
$$a = \log_{0.5} 5$$
 и $b = \log_{0.5} 6$;

26.
$$a = \log_2 \frac{9}{13}$$
 и $b = \log_2 \frac{11}{15}$;

27.
$$a = \log_8 5$$
 и $b = \log_6 5$;

28. a)
$$a = \log_{0.5} 5$$
 и $b = \log_{0.6} 6$;

б)
$$a = \log_4 0.6$$
 и $b = \log_5 0.7$;

B)
$$a = \log_{0.6} 0.7$$
 и $b = \log_{0.5} 0.8$;

$$\Gamma$$
) $a = \log_3 2$ и $b = \log_4 3$;

29.
$$a = \log_3 10 \text{ H } b = 4(1 - \lg 3);$$

30.
$$a = 2^{\log_3 5}$$
 и $b = 5^{\log_3 2}$;

31.
$$a = 4^{\log_5 7}$$
 и $b = 7^{\log_5 4}$;

32.
$$a = \log_7 29$$
 и $b = \log_6 13$;

33.
$$a = \log_2 3 + \log_3 2$$
 и $b = 2$;

34.
$$a = \log_6 7$$
 и $b = \log_7 8$;

35.
$$a = \log_3 4$$
 и $b = \log_5 6$.

1.7. Сравнение выражений разного вида

При сравнении выражений разного вида используют выше приведенные методы.

Пример 22. *Сравнить числа*: $2\log_{12} 145 \ u \sqrt{15}$.

Решение. Так как
$$2\log_{12} 145 >$$
 $> 2\log_{12} 144 = 4$ и $\sqrt{15} < \sqrt{16} = 4$, то $2\log_{12} 145 > \sqrt{15}$.

Otbet:
$$2\log_{12} 145 > \sqrt{15}$$
.

Пример 23. Сравнить числа:

$$\log_2 11 \ u \ 2 + \sqrt{3}$$
.

Решение. Так как $\sqrt{3} > \sqrt{2,25} = 1,5$, то

$$2 + \sqrt{3} > 3.5 = \log_2(8\sqrt{2}) > \log_2(8 \cdot 1.4) =$$

= $\log_2(11.2) > \log_2 11.$

Ответ:
$$2 + \sqrt{3} > \log_2 11$$
.

Тренировочные упражнения

Сравните числа:

36.
$$a = \log_5 3$$
 и $b = \frac{2}{3}$.

37.
$$a = \log_2 5$$
 и $b = 2\frac{1}{3}$.

38.
$$a = \log_{\log_3 2} \frac{1}{2}$$
 и $b = 1$.

39.
$$a = \log_3(5 + \sqrt{34})$$
 и $b = \frac{7}{3}$.

40.
$$a = \log_{2+\sqrt{3}} 8$$
 и $b = 1.5$.

2. Область определения выражения (функции)

В данном пункте ограничимся нахождением области определения логарифмических выражений.

Отметим, что решение логарифмических неравенств включает в себя нахождение области определения данного неравенства или по-другому области допустимых значений (ОДЗ) неизвестной неравенства, поэтому напомним, что:

- а) выражение $\log_a f(x)$, где a постоянное положительное число, не равное 1 ($a>0, a\ne 1$), определено при всех x, принадлежащих множеству решений неравенства f(x)>0;
- б) выражение $\log_{g(x)} f(x)$ определено при всех x, принадлежащих множеству решений системы неравенств

$$\begin{cases} g(x) > 0, \\ g(x) \neq 1, \\ f(x) > 0. \end{cases}$$

Рассмотрим несколько подготовительных задач.

Пример 24. Найти область определения выражения

$$\log_3(2x^2+10x+5)+\log_3(2+3x-x^2)$$

Решение. Данная задача сводится к решению следующей системы неравенств

$$\begin{cases} 2x^2 + 10x + 5 > 0 \\ 2 + 3x - x^2 > 0. \end{cases}$$

Решение первого неравенства этой системы есть множество

$$\left(-\infty; \frac{-5-\sqrt{15}}{2}\right) \cup \left(\frac{-5+\sqrt{15}}{2}; +\infty\right).$$

Решение второго неравенства есть множе-

CTBO
$$\left(\frac{3-\sqrt{17}}{2}; \frac{3+\sqrt{17}}{2}\right)$$
.

Сравним числа
$$\frac{3-\sqrt{17}}{2}$$
 и $\frac{-5+\sqrt{15}}{2}$.

$$\frac{3 - \sqrt{17}}{2} \vee \frac{-5 + \sqrt{15}}{2} \Leftrightarrow$$

$$\Leftrightarrow 3 - \sqrt{17} \vee -5 + \sqrt{15} \Leftrightarrow 8 - \sqrt{17} \vee \sqrt{15} \Leftrightarrow$$

$$\Leftrightarrow (8 - \sqrt{17})^2 \vee 15 \Leftrightarrow$$

$$\Leftrightarrow 81 - 16\sqrt{17} \vee 15 \Leftrightarrow 66 \vee 16\sqrt{17} \Leftrightarrow$$

$$\Leftrightarrow 33 \vee 8\sqrt{17} \Leftrightarrow 1089 > 1088.$$

Следовательно
$$\frac{3-\sqrt{17}}{2} > \frac{-5+\sqrt{15}}{2}$$
.

Omsem:
$$\left(\frac{3-\sqrt{17}}{2}; \frac{3+\sqrt{17}}{2}\right)$$
.

Пример 25. Найти область определения функции

$$y = \log_3(2^{\log_{x-3}0.5} - 1) + \frac{1}{\log_3(2x - 6)}$$

Решение. Область определения данной функции задается системой неравенств

$$\begin{cases} x - 3 > 0, \\ x - 3 \neq 1, \\ 2x - 6 \neq 1, \\ 2^{\log_{x-3} 0, 5} - 1 > 0 \end{cases} \Leftrightarrow \begin{cases} x > 3, \\ x \neq 4, \\ x \neq 3, 5, \\ \log_{x-3} 0, 5 > 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x > 3, \\ x \neq 3, 5, \\ x \neq 4, \end{cases} \Leftrightarrow \begin{bmatrix} 3 < x < 3, 5, \\ 3, 5 < x < 4. \end{cases}$$

Ответ:
$$(3;3,5) \cup (3,5;4)$$
.

Пример 26. Найти область определения выражения $\log_{2,5-x}(10-3x-x^2)$.

Решение. Из определения логарифма получаем систему неравенств

$$\begin{cases} 10 - 3x - x^2 > 0, \\ 2, 5 - x > 0, \\ 2, 5 - x \neq 1 \end{cases} \Leftrightarrow \begin{cases} x^2 + 3x - 10 < 0, \\ x < 2, 5, \\ x \neq 1, 5 \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} (x+5)(x-2) < 0, \\ x < 2,5, \\ x \neq 1,5 \end{cases} \Leftrightarrow \begin{cases} -5 < x < 2, \\ x < 2,5, \\ x \neq 1,5 \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{bmatrix} -5 < x < 1, 5, \\ 1, 5 < x < 2. \end{bmatrix}$$

Объединение промежутков (-5;1,5) и (1,5;2) составляют область определения данного выражения.

Ombem: $(-5,1,5) \cup (1,5,2)$.

Тренировочные упражнения

Найдите область определения функций:

41.
$$y = \sqrt{1 - \log_8(x^2 - 4x + 3)}$$
.

42.
$$y = \sqrt{\log_{\frac{1}{2}}^2 (x-3) - 1}$$
.

43.
$$y = \sqrt{\log_{\frac{1}{4}} \left(\frac{x}{x+1}\right)^2 - 1}$$
.

44.
$$y = \sqrt[4]{2 - \lg|x - 2|}$$

45.
$$y = \log_3 \left(\log_{\frac{1}{2}} \left(x^2 - \frac{3x}{2} \right) \right).$$

46.
$$y = \sqrt{\log_{\frac{1}{2}} \log_3 \frac{x+1}{x-1}}$$
.

47.
$$y = \sqrt{\sin x - 0.5} + \log_3(25 - x^2)$$
.

3. Решение показательных и логарифмических неравенств

При решении показательных, логарифмических и смешанных неравенств в основном достаточно использования стандартных методов решения неравенств. К таковым методам можно отнести:

- метод равносильных переходов;
- решение неравенства на промежут-ках;
- метод замены;
- обобщенный метод интервалов.

Более подробно различные методы решения неравенств рассмотрены в пособии [4].

3.1. Показательные неравенства

Простейшее показательное неравенство имеет вид

$$a^x \vee b$$
,

где a > 0, $a \ne 1$, и символ \lor заменяет один из знаков неравенств: >, <, \ge , \le .

При a>1 решение соответствующих неравенств записывается следующим образом:

 $a^x \ge b \Leftrightarrow x \ge \log_a b$ при b > 0 и $x \in \mathbf{R}$ при $b \le 0$;

 $a^x > b \Leftrightarrow x > \log_a b$ при b > 0 и $x \in \mathbf{R}$ при $b \le 0$;

 $a^x \le b \Leftrightarrow x \le \log_a b$ при b > 0 и $x \in \emptyset$ при $b \le 0$;

 $a^x < b \Leftrightarrow x < \log_a b$ при b > 0 и $x \in \emptyset$ при $b \le 0$.

При 0 < a < 1 решение соответствующих неравенств записывается следующим образом:

 $a^x \ge b \Leftrightarrow x \le \log_a b$ при b > 0 и $x \in \mathbf{R}$ при $b \le 0$;

 $a^x > b \Leftrightarrow x < \log_a b$ при b > 0 и $x \in \mathbf{R}$ при $b \le 0$;

 $a^x \le b \Leftrightarrow x \ge \log_a b$ при b > 0 и $x \in \emptyset$ при $b \le 0$;

 $a^x < b \Leftrightarrow x > \log_a b$ при b > 0 и $x \in \emptyset$ при $b \le 0$.

К числу простейших показательных неравенств относят неравенства вида $a^{f(x)} \ge a^{g(x)}$ (или $a^{f(x)} > a^{g(x)}$), где a > 0, $a \ne 1$. Для их решения используется следующая стандартная схема:

• Если число a > 1, то

$$a^{f(x)} \ge a^{g(x)} \Leftrightarrow f(x) \ge g(x)$$
.

• Если число 0 < a < 1, то

$$a^{f(x)} \ge a^{g(x)} \Leftrightarrow f(x) \le g(x)$$
.

Замечание. В случае строго неравенства в схеме знаки нестрогих неравенств \geq и \leq заменяются на знаки > и < соответственно.

Пример 27. Решить неравенство

$$\sqrt{2}^{2x} \ge 2^{\sqrt{x+2}}.$$

Решение. Так как $\sqrt{2} = 2^{\frac{1}{2}}$, то неравенство преобразуется к виду

$$2^x \ge 2^{\sqrt{x+2}}.$$

которое равносильно неравенству

$$x \ge \sqrt{x+2} \iff \begin{cases} x \ge 0, \\ x+2 \ge 0, \\ x^2 \ge x+2 \end{cases} \iff \begin{cases} x \ge 0, \\ x \ge -2, \\ x^2 - x - 2 \ge 0 \end{cases}$$

Так как

$$x^2 - x - 2 \ge 0 \Leftrightarrow \begin{bmatrix} x \le -1, \\ x \ge 2, \end{bmatrix}$$

то решением системы является множество $[2; +\infty)$.

Otbet: $[2; +\infty)$.

Пример 28. Решить неравенство

$$4 \cdot 3^{x+2} - 2 \cdot 5^{x+2} \le 5^{x+3} - 3^{x+3}.$$

Решение. Приведем данное неравенство к следующему виду

$$4 \cdot 3^{x+2} + 3^{x+3} \le 5^{x+3} + 2 \cdot 5^{x+2} \iff 3^{x+2} (4+3) \le 5^{x+2} (5+2) \iff$$

$$\Leftrightarrow 3^{x+2} \le 5^{x+2} \Leftrightarrow \left(\frac{3}{5}\right)^{x+2} \le 1 \Leftrightarrow \left(\frac{3}{5}\right)^{x+2} \le \left(\frac{3}{5}\right)^{0}.$$

Учитывая свойство строго убывающей функции $y = \left(\frac{3}{5}\right)^t$, получаем $x+2 \ge 0$ и $x \ge -2$.

Ответ:
$$[-2; +\infty)$$
.

При решении показательного неравенства вида $f(a^x) \lor 0$ используется замена $a^x = t$, где t > 0, в результате которой неравенство приводится к виду $f(t) \lor 0$.

Пример 29. Решить неравенство

$$3 \cdot 2^{2x+1} + 5 \cdot 6^x > 2 \cdot 3^{2x+1}$$

Решение (сведение к алгебраическому неравенству). Запишем неравенство в виде

$$6 \cdot 2^{2x} + 5 \cdot 2^x \cdot 3^x - 6 \cdot 3^{2x} > 0$$

Полученное неравенство имеет вид

$$t \cdot a^{2f(x)} + p \cdot a^{f(x)} \cdot b^{g(x)} + q \cdot b^{2g(x)} = 0$$
,

где t, p, q — фиксированные действительные числа. Общий метод решения неравенств такого вида состоит в делении на выражение $a^{2f(x)} > 0$ (или на $a^{f(x)} \cdot b^{g(x)} > 0$, или на $b^{2g(x)} > 0$) и последующей замене переменной.

Разделим обе части исходного неравенства на $3^{2x} > 0$

$$6 \cdot \left(\frac{2}{3}\right)^{2x} + 5 \cdot \left(\frac{2}{3}\right)^{x} - 6 > 0.$$

Положим $\left(\frac{2}{3}\right)^x = t$, где t > 0 . В итоге получим квадратичное неравенство

$$6t^2 + 5t - 6 > 0 \Leftrightarrow 6\left(t - \frac{2}{3}\right)\left(t + \frac{3}{2}\right) > 0.$$

Отсюда с учетом условия t > 0 получаем $t > \frac{2}{3}$.

Выполняя обратную замену, получим неравенство $\left(\frac{2}{3}\right)^x > \frac{2}{3}$, решение которого есть множество $(-\infty; 1)$.

Ответ: $(-\infty; 1)$.

Пример 30. Решить неравенство

$$5^{2x^2-6} - 5^{(x+2)(x-1)} - 24 \cdot 5^{2(x+2)} \ge 0.$$

Решение. Перепишем неравенство в виде

$$5^{2x^2-6} - 5^{x^2+x-2} - 24 \cdot 5^{2x+4} \le 0.$$

Учитывая, что $5^{2x+4} > 0$ при любом значении x, разделим обе части неравенства на 5^{2x+4} .

$$5^{2x^2 - 2x - 10} - 5^{x^2 - x - 6} - 24 \le 0.$$

Пусть $5^{x^2-x-5}=t$, где t>0. Тогда получим квадратичное неравенство

$$t^{2} - \frac{1}{5}t - 24 \le 0 \Leftrightarrow 5t^{2} - t - 120 \le 0 \Leftrightarrow$$
$$\Leftrightarrow 5(t - 5)(t + 4.8) \le 0.$$

Учитывая, что t > 0, получаем $0 < t \le 5$.

Переходя к переменной x, получим неравенство $0 < 5^{x^2-x-5} \le 5$. Неравенство $0 < 5^{x^2-x-5}$ справедливо при всех x, а неравенство $5^{x^2-x-5} \le 5 \Leftrightarrow x^2-x-5 \le 1$.

Решая неравенство $x^2 - x - 6 \le 0$, получим $-2 \le x \le 3$.

Пример 31. (МПУ). Решить неравенство

$$\frac{2x^2 - 11x + 15}{2^x - 6} < 0.$$

Решение. Для решения данного неравенства воспользуемся методом интервалов.

1. Пусть
$$f(x) = \frac{2x^2 - 11x + 15}{2^x - 6}$$
.

- 2. $D(f) = (-\infty; \log_2 6) \cup (\log_2 6; +\infty)$.
- 3. Найдем нули функции f(x).

$$\frac{2x^2 - 11x + 15}{2^x - 6} = 0 \Leftrightarrow \begin{bmatrix} x = 2, 5, \\ x = 3. \end{bmatrix}$$

4. Сравним число $\log_2 6$ с числами 2,5 и 3, и затем определим (рис. 2) промежутки знакопостоянства функции f(x):

$$\log_2 6 < \log_2 8 = 3$$

и так как справедлива цепочка сравнений

 $\log_2 6 \vee 2.5 \Leftrightarrow \log_2 6 \vee \log_2 2^{2.5} \Leftrightarrow 6 \vee 2^{2.5} \Leftrightarrow 6^2 \vee 2^5 \Leftrightarrow 36 > 25$, to $\log_2 6 > 2.5$.

Ответ: $(-\infty; 2,5) \cup (\log_2 6;3)$.

Тренировочные упражнения

Решите неравенство:

48.
$$9 \cdot 3^{2x+2} + 3 \cdot 3^{2x+1} - 9^x \le 89$$
.

49.
$$3^{1+x} \cdot 2^{1-x} + 3^x \cdot 2^{-x} < 10.5$$
.

50. (**МИФИ**).
$$\frac{7^x - 30}{7^{x-1} + 1} \le -14$$
.

51.
$$3^{x-1} \ge \frac{2-3^x}{3^x-4}$$
.

52. (**МИЭМ**).
$$\frac{3^x - 25}{x + 1} \le \frac{3^x - 25}{x - 3}.$$

53. (M
$$\Gamma$$
A Π). $3 \cdot 49^x - 16 \cdot 21^x + 21 \cdot 9^x < 0$.

54. (MΓAII).
$$5 \cdot 9^x - 18 \cdot 15^x + 9 \cdot 25^x > 0$$
.

55.
$$16^x - 2 \cdot 12^x \le 3^{2x+1}$$
.

56.
$$7^{2x} - 33 \cdot \left(\frac{7}{5}\right)^x - 14 \cdot 5^{1-2x} \le 0$$
.

57. (**M**
$$\Gamma$$
AII) $4^{x^2-x} - 10 \cdot 2^{x^2} + 2^{2x+4} \ge 0$.

58.
$$2^{2x^2-6x+3} + 6^{x^2-3x+1} - 3^{2x^2-6x+3} \ge 0$$

59. (MГАП).
$$6^{x+2} \ge 4 \cdot 7^{|x+1|}$$
.

60.
$$3^{x+2} \cdot 2^{1-2x} \le 20$$
.

61.
$$3^{2x-1} < 11^{3-x}$$

62.
$$\left(\frac{1}{3}\right)^x (x+2)^2 > (2+x)^2$$
.

63.
$$x^2 \cdot 2^{x+2} - 12x^2 \cdot 3^x + 3^{x+1} > 2^x$$
.

64.
$$\left| 3^x + 4x - 9 - 8 \right| \le 3^x - 4x - 1$$
.

3.2. Логарифмические неравенства

Простейшее логарифмическое неравенство имеет вид

$$\log_a x \vee b$$
,

где a > 0, $a \ne 1$, и символ \lor заменяет один из знаков неравенств: >, <, \ge , \le .

При a > 1 решение соответствующих неравенств записывается следующим образом:

$$\begin{split} \log_a x &\geq b \Leftrightarrow x \geq a^b; \\ \log_a x &> b \Leftrightarrow x > a^b; \\ \log_a x &\leq b \Leftrightarrow 0 < x \leq a^b; \\ \log_a x &< b \Leftrightarrow 0 < x < a^b. \end{split}$$

При 0 < a < 1 решение соответствующих неравенств записывается следующим образом:

$$\log_a x \ge b \Leftrightarrow 0 < x \le a^b;$$

$$\log_a x > b \Leftrightarrow 0 < x < a^b;$$

$$\log_a x \le b \Leftrightarrow x \ge a^b;$$

$$\log_a x < b \Leftrightarrow x > a^b.$$

К числу простейших относят неравенства вида $\log_a f(x) \ge \log_a g(x)$ (или $\log_a f(x) > \log_a g(x)$), где a > 0, $a \ne 1$. Для их решения используется следующая стандартная схема:

• Если число a > 1, то

$$\log_a f(x) \ge \log_a g(x) \iff \begin{cases} f(x) \ge g(x), \\ g(x) > 0. \end{cases}$$

• Если число 0 < a < 1, то

$$\log_a f(x) \ge \log_a g(x) \iff \begin{cases} f(x) \le g(x), \\ f(x) > 0. \end{cases}$$

Замечание. В случае строго неравенства в схеме знаки нестрогих неравенств ≥ и ≤ заменяются на знаки > и < соответственно.

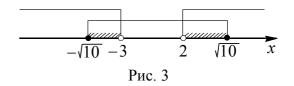
Пример 32. Решить неравенство

$$\log_{0,5}(x^2 + x - 6) \ge \log_{0,5}(x + 4).$$

Решение. Так как основание 0,5 логарифмов, стоящих в обеих частях неравенства, удовлетворяют условию 0 < 0,5 < 1, то, получаем, что данное неравенство равносильно системе

$$\begin{cases} x^2 + x - 6 \le x + 4, \\ x^2 + x - 6 > 0 \end{cases} \Leftrightarrow \begin{cases} (x - \sqrt{10})(x + \sqrt{10}) \le 0, \\ (x - 2)(x + 3) > 0. \end{cases}$$

На рис. 3 представлена графическая интерпретация получения решения последней системы неравенств.



Omsem:
$$[-\sqrt{10}; -3) \cup (2; \sqrt{10}].$$

Обратим внимание на правильное использование формул при выполнении равносильных преобразований.

Рассмотрим следующие формулы:

$$\log_a (f(x) \cdot g(x)) = \log_a f(x) + \log_a g(x)$$
 (1)

 $\log_a \frac{f(x)}{g(x)} = \log_a f(x) - \log_a g(x), \qquad (2)$

где
$$a > 0$$
, $a \ne 1$, $f(x) > 0$ и $g(x) > 0$.

Заметим, что равенства (1) и (2) в общем случае не являются тождествами, поскольку области определения левой и правой частей равенства могут не совпадать. Так в левой части равенств (1) и (2) выражение будет определено при таких значениях x, когда и f(x) < 0 и g(x) < 0. Правая часть при таких значениях x не имеет смысла.

Формулы (1) и (2) используются как для преобразования логарифма произведения (частного) в сумму (разность) логарифмов соответственно, так и в обратную сторону.

В общем случае переход слева направо может привести к потере решений. Если даны выражения $\log_a(f(x) \cdot g(x))$ или

$$\log_a \frac{f(x)}{g(x)}$$
 и есть желание преобразовать

их в сумму или разность логарифмов, равносильный переход выглядит так

$$\log_a (f(x) \cdot g(x)) = \log_a |f(x)| + \log_a |g(x)|$$

$$\log_a \frac{f(x)}{g(x)} = \log_a |f(x)| - \log_a |g(x)|.$$

В общем случае переход справа налево в формулах (1) и (2) может привести к приобретению посторонних решений. Однако эти посторонние решения могут быть исключены, как не входящие в область определения переменной исходного выражения.

Пример 33 (ЕГЭ-2011). *Решить неравенство*

$$11\log_9(x^2 - 12x + 27) \le 12 + \log_9\frac{(x-9)^{11}}{x-3}.$$

Решение. Значения x, при которых определены обе части неравенства, задаются условиями

$$\begin{cases} x^2 - 12x + 27 > 0, \\ \frac{(x-9)^{11}}{x-3} > 0 \end{cases} \Leftrightarrow \begin{cases} (x-3)(x-9) > 0, \\ \frac{(x-9)^{11}}{x-3} > 0 \end{cases} \Leftrightarrow \begin{cases} x < 3, \\ x > 9. \end{cases}$$

Область определения данного неравенства — есть множество $(-\infty; 3) \cup (9; +\infty)$. Для таких значений x из этого множества исходное неравенство приводится к виду:

$$\log_9 |(x-3)^{11}| + \log_9 |(x-9)^{11}| \le$$

$$\le 12 + \log_9 |(x-9)^{11}| - \log_9 |x-3| \Leftrightarrow$$

$$\Leftrightarrow \log_9 |(x-3)^{11}| + \log_9 |x-3| \le 12 \Leftrightarrow$$

$$\Leftrightarrow \log_9 (x-3)^{12} \le 12 \Leftrightarrow$$

$$\Leftrightarrow (x-3)^{12} \le 9^{12} \Leftrightarrow |x-3| \le 9 \Leftrightarrow$$

$$\Leftrightarrow -6 \le x \le 12.$$

Учитывая, что значения $x \in (-\infty; 3) \cup (9; +\infty)$, получим ответ $[-6; 3) \cup (9; 12]$.

Ombem:
$$[-6; 3) \cup (9; 12]$$
.

Рассмотрим неравенство вида

$$\log_{h(x)} f(x) \le \log_{h(x)} g(x) .$$

Данное неравенство равносильно сово-купности двух систем:

(1)
$$\begin{cases} h(x) > 1, \\ 0 < f(x) \le g(x), \end{cases} \text{ if } (2) \begin{cases} 0 < h(x) < 1, \\ 0 < g(x) \le f(x). \end{cases}$$

Замечание. При решении строгого неравенства $\log_{h(x)} f(x) < \log_{h(x)} g(x)$ в системах знаки нестрогих неравенств заменяются строгими.

Пример 34. *Решить неравенство*
$$\log_{x+1}(x^3 + 3x^2 + 2x) < 2$$
.

Решение. Так как

$$x^{3} + 3x^{2} + 2x = x(x+1)(x+2),$$

$$\log_{x+1}(x^{3} + 3x^{2} + 2x) =$$

$$= \log_{x+1}x(x+2) + \log_{x+1}(x+1) =$$

$$= 1 + \log_{x+1}(x^{2} + 2x).$$

Отметим, что в данном случае левая и правая части равенства определены на одном и том же множестве. Таким образом, имеем неравенство

$$\log_{x+1}(x^2 + 2x) < 1 \Leftrightarrow$$

$$\Leftrightarrow \log_{x+1}(x^2 + 2x) < \log_{x+1}(x+1). \quad (*)$$

Так как основание логарифма в этом неравенстве может быть как больше, так и меньше единицы, то рассмотрим два случая.

1- \ddot{u} случа \ddot{u} . 0 < x+1 < 1, то есть -1 < x < 0. В этом случае неравенство (*) равносильно неравенству

$$x^{2} + 2x > x + 1 \Leftrightarrow x^{2} + x - 1 > 0 \Leftrightarrow$$

$$\Leftrightarrow \begin{bmatrix} x < \frac{-1 - \sqrt{5}}{2}, \\ x > \frac{-1 + \sqrt{5}}{2}. \end{bmatrix}$$

Поскольку
$$\frac{-1-\sqrt{5}}{2} < -1$$
, a $\frac{-1+\sqrt{5}}{2} > 0$,

то полученное множество не имеет общих точек с промежутком (-1; 0) и, следовательно, при $x \in (-1; 0)$ неравенство (*) решений не имеет.

2-*й случай*. x+1>1, то есть x>0. В этом случае неравенство (*) равносильно неравенству

$$x^{2} + 2x < x + 1 \Leftrightarrow \frac{-1 - \sqrt{5}}{2} < x < \frac{-1 + \sqrt{5}}{2}$$
.

Учитывая условие x > 0, получим, что решением неравенства (*) является про-

межуток
$$\left(0; \frac{\sqrt{5}-1}{2}\right)$$
.

Ответ:
$$\left(0; \frac{\sqrt{5}-1}{2}\right)$$
.

Тренировочные упражнения

Решите неравенство:

65. (**MII**Г**У**). $\log_3(x^2 - x) \ge \log_3(3x + 2)$.

66. (**M**
$$\Gamma$$
Y). $2 \ln \frac{1}{3x-2} + \ln(5-2x) \ge 0$.

67. (EF) **2011**).
$$\frac{2\log_3(x^2-4x)}{\log_3 x^2} \le 1.$$

68. (МИОО, май 2010).

$$\log_{\frac{1}{3}}(x^2 - 3x - 1) + \log_{\frac{1}{3}}(2x^2 - 3x - 2) \le$$

$$\le \log_{\frac{1}{3}}(x^2 - 2x - 1)^2 + \log_3 4 - 2.$$

69.

$$\frac{\log_5(x^2 - 4x - 11)^2 - \log_{11}(x^2 - 4x - 11)^3}{2 - 5x - 3x^2} \ge 0.$$

70. (ΕΓЭ 2010).

$$\frac{\log_4(2-x) - \log_{14}(2-x)}{\log_{14} x - \log_{49} x} \le \log_4 49.$$

71.
$$\log_{0,1} \log_2 \frac{x^2 + 1}{|x - 1|} < 0.$$

72. (МИОО 2010)

$$\frac{\log_{2x-1}(\log_2(x^2-2x))}{\log_{2x-1}(x^2+6x+10)} \le 0.$$

73. (МИОО, 2011).

$$\frac{\log_{2x-3}^{2} \frac{1}{3x-5} + \log_{2x-3} (9x^{2} - 30x + 25) + 7}{2 \cdot \log_{2x-3} (6x^{2} - 19x + 15) - 1} \le 3.$$

74. (EF3 2010).

$$\log_{(x+2)^2}(x(x+1)(x+3)(x+4)) > 1$$
.

3.3. Смешанные неравенства

Пример 35. Решить неравенство

$$(0,5)^{\log_3 \log_{1/5}(x^2-4/5)} > 1.$$

Решение. Так как функция $y = \left(\frac{1}{2}\right)^t$

убывающая и $1 = \left(\frac{1}{2}\right)^0$, то получим

$$(0.5)^{\log_3 \log_{1/5} \left(x^2 - \frac{4}{5}\right)} > 1 \Leftrightarrow$$

$$\Leftrightarrow \log_3 \log_{1/5} \left(x^2 - \frac{4}{5}\right) < 0.$$

Функция $y = \log_3 t$ возрастающая, с областью определения t > 0. С учетом того, что $0 = \log_3 1$, последнее неравенство равносильно системе

$$\begin{cases} \log_{\frac{1}{5}} \left(x^2 - \frac{4}{5} \right) < 1, & \begin{cases} \log_{\frac{1}{5}} \left(x^2 - \frac{4}{5} \right) < \log_{\frac{1}{5}} \frac{1}{5}, \\ \log_{\frac{1}{5}} \left(x^2 - \frac{4}{5} \right) > 0 \end{cases} \Leftrightarrow \begin{cases} \log_{\frac{1}{5}} \left(x^2 - \frac{4}{5} \right) < \log_{\frac{1}{5}} \frac{1}{5}, \\ \log_{\frac{1}{5}} \left(x^2 - \frac{4}{5} \right) > \log_{\frac{1}{5}} 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x^2 - \frac{4}{5} > \frac{1}{5}, \\ x^2 - \frac{4}{5} > 0, \iff \begin{cases} x^2 > 1, \\ x^2 < \frac{9}{5}. \end{cases} \\ x^2 < \frac{4}{5} < 1 \end{cases}$$

Далее,
$$x^2 > 1 \Leftrightarrow \begin{bmatrix} x < -1, \\ x > 1. \end{bmatrix}$$
 и $x^2 < \frac{9}{5} \Leftrightarrow \frac{3}{\sqrt{5}} < x < \frac{3}{\sqrt{5}}$. Учитывая, что $\sqrt{5} < 3$ и, значит, $\frac{3}{\sqrt{5}} > 1$, а $-\frac{3}{\sqrt{5}} < -1$, запишем решение исходного неравенства

$$\left(-\frac{3}{\sqrt{5}};-1\right) \cup \left(1;\frac{3}{\sqrt{5}}\right).$$
Other: $\left(-\frac{3}{\sqrt{5}};-1\right) \cup \left(1;\frac{3}{\sqrt{5}}\right).$

Пример 36. (ЕГЭ 2010). *Решить неравенство*

$$\log_{5} \left(\left(7^{-x^{2}} - 5 \right) \left(7^{-x^{2}+16} - 1 \right) \right) + \log_{5} \frac{7^{-x^{2}} - 5}{7^{-x^{2}+16} - 1} > \\ > \log_{5} \left(7^{2-x^{2}} - 1 \right)^{2}.$$

Решение. В соответствии с определением логарифма, входящие в неравенство выражения имеют смысл при выполнении условий:

$$\begin{cases} (7^{-x^2} - 5)(7^{-x^2+16} - 1) > 0, \\ 7^{2-x^2} - 1 \neq 0. \end{cases}$$

Сделаем замену $7^{-x^2} = t$. Так как неравенство $-x^2 \le 0$ выполняется при всех x, то по свойству степени с основанием больше единицы получаем $0 < 7^{-x^2} \le 7^0 = 1$. Отсюда $0 < t \le 1$. С учетом последнего неравенства, запишем полученную выше систему

$$\begin{cases} (t-5)(7^{16}t-1) > 0, \\ 7^2t-1 \neq 0, & \Leftrightarrow 0 < t < 7^{-16}. \\ 0 < t \le 1 \end{cases}$$

Исходное неравенство с переменной t будет иметь вид

$$\log_5((t-5)(7^{16}t-1)) + \log_5\frac{t-5}{7^{16}t-1} >$$
 $> \log_5(49t-1)^2$, где $0 < t < 7^{-16}$.

Используя свойство логарифма (при допустимых значениях переменной сумма логарифмов с одинаковым основанием равна логарифму произведения), получим

$$\log_5(t-5)^2 > \log_5(7^2t-1)^2 \iff (t-5)^2 > (49t-1)^2,$$

так как $(t-5)^2 > 0$ и $(49t-1)^2 > 0$ при $0 < t \le 7^{-16}$.

Решим последнее неравенство:

$$(t-5)^{2} > (49t-1)^{2} \iff \Leftrightarrow (t-5)^{2} - (49t-1)^{2} > 0 \iff \Leftrightarrow ((t-5) - (49t-1))((t-5) + (49t-1)) > 0 \iff \Leftrightarrow (48t+4)(50t-6) < 0 \iff -\frac{1}{12} < t < \frac{3}{25}.$$

С учетом ограничения на t получаем $0 < t < 7^{-16}$.

Выполнив обратную замену, имеем $7^{-x^2} < 7^{-16}$. Отсюда

$$x^2 > 16 \Leftrightarrow \begin{bmatrix} x < -4, \\ x > 4. \end{bmatrix}$$

Ombem. $(-\infty; -4) \cup (4; +\infty)$.

Пример 37. Решить неравенство

$$7^{\log \frac{2}{7}x} + x^{\log \frac{7}{7}x} \ge 2\sqrt[4]{7}.$$

Решение. Заметим, что выражения, входящие в неравенство, определены при всех x > 0, и для любого x > 0 справедливо тождество $x = 7^{\log_7 x}$.

Следовательно, неравенство можем записать в следующем виде.

$$7^{\log \frac{7}{7}x} + (7^{\log_{7}x})^{\log_{7}x} \ge 2\sqrt[4]{7} \Leftrightarrow$$

$$\Leftrightarrow 2 \cdot 7^{\log_{7}^{2}x} \ge 2\sqrt[4]{7} \Leftrightarrow 7^{\log_{7}^{2}x} \ge 7^{\frac{1}{4}} \Leftrightarrow$$

$$\Leftrightarrow \log_{7}^{2}x \ge \frac{1}{4} \Leftrightarrow |\log_{7}x| \ge \frac{1}{2} \Leftrightarrow$$

$$\Leftrightarrow \left[\log_{7}x \ge \frac{1}{2}, \Leftrightarrow \left[x \ge \sqrt{7}, \atop 0 < x \le \frac{1}{\sqrt{7}}\right]\right]$$

$$\mathbf{Other:} \left(0; \frac{1}{\sqrt{7}}\right] \cup [\sqrt{7}; +\infty).$$

Тренировочные упражнения

Решите неравенство:

75.
$$\log_2(2^x + 1) \cdot \log_{1/2}(2^{x+1} + 2) > -2$$
.

76. (ΕΓ**Э 2010**).

$$\log_5 \left((3^{-x^2} - 5)(3^{-x^2+9} - 1) \right) + \log_5 \frac{3^{-x^2} - 5}{3^{-x^2+9} - 1} > \log_5 (3^{7-x^2} - 4)^2.$$

77. (ЕГЭ 2010).

$$\frac{2\log_{2^{x-1}}|x|}{\log_{2^{x-1}}(x+7)} \le \frac{\log_3(x+12)}{\log_3(x+7)}.$$

78. (ΕΓ**Э** 2010).

$$\frac{\log_{3^{x+4}} 27}{\log_{3^{x+4}} (-81x)} \le \frac{1}{\log_3 \log_{\frac{1}{3}} 3^x}.$$

79. (МИОО, 2011).

$$(x+1)\log_3 6 + \log_3 \left(2^x - \frac{1}{6}\right) \le x - 1.$$

80.
$$x \ge \log_2 (101 \cdot 10^x - 10^{2+2x}) - \log_5 (101 \cdot 2^x - 5^{2+x} \cdot 2^{2+2x}).$$

81. (МИОО, 2010).

$$7^{-|x-3|} \cdot \log_2(6x - x^2 - 7) \ge 1.$$

4. Системы неравенств

Для решения системы неравенств с одной переменной к каждому неравенству применяют те же методы, которые были рассмотрены выше.

Пример 38. (**МИОО**). Решить систему неравенств

$$\begin{cases} 8^{x} + 8 \ge 4^{x+1} + 2^{x+1}, \\ \log_{x-1} 7 > 2. \end{cases}$$

Решение. Решим первое неравенство системы

$$8^{x} - 4^{x+1} + 8 - 2^{x+1} \ge 0 \Leftrightarrow$$

$$\Leftrightarrow 4^{x} (2^{x} - 4) - 2(2^{x} - 4) \ge 0 \Leftrightarrow$$

$$\Leftrightarrow (4^{x} - 2)(2^{x} - 4) \ge 0 \Leftrightarrow$$

$$\Leftrightarrow (4^{x} - 4^{0,5})(2^{x} - 2^{2}) \ge 0 \Leftrightarrow$$

$$\Leftrightarrow (x - 0,5)(x - 2) \ge 0 \Leftrightarrow$$

$$x \ge 2.$$

Второе неравенство системы равносильно совокупности двух систем неравенств.

так как $1-\sqrt{7} < 1$ и $2 < 1+\sqrt{7}$ (докажите самостоятельно).

Решением исходной системы является множество $(2;1+\sqrt{7})$.

Ответ:
$$(2;1+\sqrt{7})$$
.

Пример 39. (**МИОО**). Решить систему неравенств

$$\begin{cases} \sqrt{x+2} + \log_5(x+3) \ge 0, \\ 9^{x+1} - 28 \cdot 3^x + 3 \ge 0. \end{cases}$$

Решение. Решение системы начнем со второго неравенства.

Пусть $3^x = t$, тогда получим квадратное неравенство $9t^2 - 28t + 3 \ge 0$, имеющее решение $t \le \frac{1}{9}$ или $t \ge 3$. Отсюда

имеем $3^x \le \frac{1}{9}$ или $3^x \ge 3$ и решение второго неравенства системы: $(-\infty; -2] \cup [1; +\infty)$.

Для решения первого неравенства системы рассмотрим функцию

$$f(x) = \sqrt{x+2} + \log_5(x+3)$$
,

которая является взрастающей на промежутке $[-2;+\infty)$, как сумма двух возрастающих функций.

Так как f(-2) = 0, то $f(x) \ge 0$ для всех значений $x \in [-2; +\infty)$. Следовательно, решением первого неравенства является промежуток $[-2; +\infty)$.

Общим решением двух неравенств системы является множество $\{-2\} \cup [1; +\infty)$.

Ответ:
$$\{-2\} \cup [1; +\infty)$$

Пример 40. Решить систему неравенств

$$\begin{cases} \log_{x^2 + \frac{1}{4}} \left(\frac{x^2}{2} + \frac{x}{4} + \frac{1}{2} \right) \ge 1, \\ x^2 - 3x - 2 > 0. \end{cases}$$

Решение. Рассмотрим первое неравенство. Возможны два случая.

1. Если
$$0 < x^2 + \frac{1}{4} < 1$$
, т.е. $-\frac{\sqrt{3}}{2} < x < \frac{\sqrt{3}}{2}$,

то в этом случае исходное неравенство равносильно системе неравенств:

$$\begin{cases} \frac{x^2}{2} + \frac{x}{4} + \frac{1}{2} > 0, \\ \frac{x^2}{2} + \frac{x}{4} + \frac{1}{2} \le x^2 + \frac{1}{4} \end{cases} \Leftrightarrow \begin{cases} 2x^2 + x + 2 > 0, \\ 2x^2 - x - 1 \ge 0. \end{cases}$$

Решением этой системы неравенств является множество $(-\infty; -0.5] \cup [1; +\infty)$.

С учетом полученного ранее условия на-

ходим все значения
$$x \in \left(-\frac{\sqrt{3}}{2}; -\frac{1}{2}\right]$$
.

2. Если
$$x^2 + \frac{1}{4} > 1$$
, т.е. $|x| > \frac{\sqrt{3}}{2}$, то в

этом случае исходное неравенство равносильно неравенству:

$$\frac{x^2}{2} + \frac{x}{4} + \frac{1}{2} \ge x^2 + \frac{1}{4}.$$

24.11.2011. www.alexlarin.net

Отсюда находим все значения $x \in [-0,5;1]$. С учетом полученного ранее условия получаем значения $x \in \left(\frac{\sqrt{3}}{2};1\right]$.

Объединим полученные решения:

$$\left(-\frac{\sqrt{3}}{2}; -\frac{1}{2}\right] \cup \left(\frac{\sqrt{3}}{2}; 1\right].$$

Рассмотрим второе неравенство. Решением неравенства является множество:

$$\left(-\infty;\frac{3-\sqrt{17}}{2}\right)\cup\left(\frac{3+\sqrt{17}}{2};+\infty\right).$$

Чтобы найти решения исходной системы неравенств, заметим, что:

$$\frac{3+\sqrt{17}}{2} > \frac{3+\sqrt{16}}{2} = \frac{7}{2} > 1;$$
$$\frac{3-\sqrt{17}}{2} < \frac{3-\sqrt{16}}{2} = -\frac{1}{2}.$$

Сравним числа $-\frac{\sqrt{3}}{2}$ и $\frac{3-\sqrt{17}}{2}$. $-\frac{\sqrt{3}}{2}\vee\frac{3-\sqrt{17}}{2}\Leftrightarrow -\sqrt{3}\vee3-\sqrt{17}\Leftrightarrow$

(прибавим к обеим числам $\sqrt{3} + \sqrt{17}$)

$$\Leftrightarrow \sqrt{17} \vee 3 + \sqrt{3} \Leftrightarrow 17 \vee 12 + 6\sqrt{3} \Leftrightarrow 5 \vee 6\sqrt{3}.$$

Так как $\sqrt{3} > 1$, то $6\sqrt{3} > 5$ и тогда $-\frac{\sqrt{3}}{2} < \frac{3 - \sqrt{17}}{2}$.

Следовательно, решением данной в условии системы является множество:

$$\left(-\frac{\sqrt{3}}{2}; \frac{3-\sqrt{17}}{2}\right).$$
Other: $\left(-\frac{\sqrt{3}}{2}; \frac{3-\sqrt{17}}{2}\right).$

Пример 41. Решить систему неравенств

$$\begin{cases} \frac{2 \cdot 81^{x} + 3^{x} - 87}{81^{x} - 3} \ge 2, \\ \log_{2}^{2}(x+4) - 4\log_{2}(x+4) + 3 \le 0. \end{cases}$$

Решение. Рассмотрим первое неравенство. Пусть $3^x = t$, где t > 0. Тогда имеем

$$\frac{2 \cdot t^4 + t - 87}{t^4 - 3} \ge 2 \Leftrightarrow \frac{2 \cdot t^4 + t - 87}{t^4 - 3} - 2 \ge 0 \Leftrightarrow$$

$$\Leftrightarrow \frac{t - 81}{t^4 - 3} \ge 0 \Leftrightarrow \frac{t - 81}{(t^2 - \sqrt{3})(t^2 + \sqrt{3})} \ge 0 \Leftrightarrow$$

$$\Leftrightarrow \frac{t - 81}{t^2 - \sqrt{3}} \ge 0 \Leftrightarrow \begin{bmatrix} 0 < t < \sqrt[4]{3}, \\ t \ge 81. \end{bmatrix}$$

Отсюда получаем

$$\begin{cases} 3^{x} < \sqrt[4]{3}; \\ 3^{x} \ge 81 \end{cases} \Leftrightarrow \begin{bmatrix} t < \frac{1}{4}, \\ t \ge 4. \end{cases}$$

Рассмотрим второе неравенство. Пусть $\log_2(x+4) = a$. Тогда имеем

$$a^2 - 4a + 3 \le 0 \Leftrightarrow 1 \le a \le 3$$
.

Отсюда получаем $1 \le \log_2(x+4) \le 3$ или $2 \le x+4 \le 8 \Leftrightarrow -2 \le x \le 4$.

В итоге получаем, что решение исходной системы есть множество:

$$\left[-2;\frac{1}{4}\right] \cup \left\{4\right\}.$$
Other:
$$\left[-2;\frac{1}{4}\right] \cup \left\{4\right\}.$$

Пример 42. Решить систему неравенств

$$\begin{cases} 25^{x} - 2 \cdot 5^{x} \ge 3, \\ \log_{\frac{2}{3}}^{2} x + \log_{\frac{2}{3}} x \le 2. \end{cases}$$

Решение. 1. Неравенство $25^x - 2 \cdot 5^x \ge 3$ данной системы запишем в виде $(5^x)^2 - 2 \cdot 5^x - 3 \ge 0$.

Пусть $5^x = t$, где t > 0. Тогда неравенство примет вид: $t^2 - 2t - 3 \ge 0$ или $(t-3)(t+1) \ge 0$. Отсюда с учетом неравенства t > 0 получаем $t \ge 3$.

Выполняя обратную замену, имеем

$$5^x \ge 3 \Leftrightarrow 5^x \ge 5^{\log_5 3} \Leftrightarrow x \ge \log_5 3$$
.

2. Второе неравенство системы запишем в виде $\log_{\frac{2}{3}}^2 x + \log_{\frac{2}{3}} x - 2 \le 0$.

Пусть $\log_{\frac{2}{3}} x = a$. Тогда неравенство

примет вид: $a^2 + a - 2 \le 0$ или

 $(a-1)(a+2) \le 0$. Отсюда получаем $-2 \le a \le 1$.

Выполняя обратную замену, имеем $-2 \le \log_{\frac{2}{3}} x \le 1$. Отсюда с учетом того, что основание логарифмической функции

меньше 1, получаем $\frac{2}{3} \le x \le \frac{9}{4}$.

3. Так как $0 = \log_5 1 < \log_5 3 < \log_5 5 = 1$, то для получения ответа необходимо сравнить числа $\log_5 3$ и $\frac{2}{3}$.

Так как $\frac{2}{3} = \log_5 5^{\frac{2}{3}} = \log_5 \sqrt[3]{25}$, а $\log_5 3 = \log_5 \sqrt[3]{27}$, то из неравенства $\sqrt[3]{27} > \sqrt[3]{25}$ следует $\log_5 \sqrt[3]{27} > \log_5 \sqrt[3]{25}$ и $\frac{2}{3} < \log_5 3$.

Следовательно, решениями данной системы неравенств являются все значения $x \in \left[\log_5 3; \frac{9}{4}\right]$.

Omsem:
$$\left[\log_5 3; \frac{9}{4}\right]$$
.

Пример 43. Решить систему неравенств

$$\begin{cases} \log_{7-x}(x+2) \le \log_{7-x}(3-x), \\ 32 \cdot 9^x \le 60 \cdot 3^x - 7. \end{cases}$$

Решение. 1. Для решения неравенства $\log_{7-x}(x+2) \le \log_{7-x}(3-x)$ системы рассмотрим два случая.

Пусть 7-x>1, т.е. x<6. Тогда рассматриваемое неравенство будет равносильно следующему двойному неравенству $0< x+2 \le 3-x$. Отсюда получаем $-2< x \le \frac{1}{2}$ с учетом x<6.

Пусть 0 < 7 - x < 1, т.е. 6 < x < 7. Тогда рассматриваемое неравенство будет равносильно следующему двойному неравенству $x + 2 \ge 3 - x > 0$. Отсюда получаем $\frac{1}{2} \le x < 3$, что не удовлетворяет неравенству 6 < x < 7. Следовательно, в этом случае решений нет.

Получили, что данное неравенство имеет решение $-2 < x \le \frac{1}{2}$.

2. Неравенство $32 \cdot 9^x \le 60 \cdot 3^x - 7$ системы запишем в виде

$$32 \cdot (3^x)^2 - 60 \cdot 3^x + 7 \le 0.$$

Пусть $3^x = t$, где t > 0. Тогда неравенство примет вид: $32t^2 - 60t + 7 \le 0$ или $\left(t - \frac{1}{8}\right)\left(t - \frac{7}{4}\right) \le 0$. Отсюда с учетом нера-

венства t > 0 получаем $\frac{1}{8} \le t \le \frac{7}{4}$.

Выполняя обратную замену, имеем $\frac{1}{8} \le 3^x \le \frac{7}{4}$ или $\log_3 \frac{1}{8} \le x \le \log_3 \frac{7}{4}$.

3. Сравним числа $\log_3 \frac{1}{8}$, $\log_3 \frac{7}{4}$ и $-2, \frac{1}{2}$.

Так как $0 = \log_3 1 > \log_3 \frac{1}{8} > \log_3 \frac{1}{9} = -2$, а $\log_3 \frac{7}{4} = \log_3 1,75 > \log_3 \sqrt{3} = \frac{1}{2}$, поскольку $\frac{7}{4} = \sqrt{\frac{49}{16}} > \sqrt{3}$. Следовательно, решение системы неравенств есть множество $\left\lceil \log_3 \frac{1}{8}; \frac{1}{2} \right\rceil$.

Omsem:
$$\left[\log_3\frac{1}{8};\frac{1}{2}\right]$$
.

Пример 44. Решить систему неравенств

$$\begin{cases} \log_{2x-1} \frac{x^4 + 2}{2x + 1} \ge 1, \\ 16^x - 3 \cdot 12^x - 4 \cdot 9^x < 0. \end{cases}$$

Решение. 1. Для решения неравенства $\log_{2x-1} \frac{x^4 + 2}{2x + 1} \ge 1$ системы рассмотрим два случая.

Пусть 2x-1>1, т.е. x>1. Тогда 2x+1>0 и

$$\log_{2x-1} \frac{x^4 + 2}{2x+1} \ge 1 \Leftrightarrow \frac{x^4 + 2}{2x+1} \ge 2x - 1 \Leftrightarrow$$
$$\Leftrightarrow x^4 + 2 \ge (2x-1)(2x+1).$$

24.11.2011. www.alexlarin.net

Из неравенства $x^4 - 4x^2 + 3 \ge 0$, получаем $\begin{cases} 0 \le x^2 \le 1, \\ x^2 \ge 3. \end{cases}$. С учетом условия x > 1

имеем $x \ge \sqrt{3}$.

Пусть 0 < 2x - 1 < 1, т.е. 0,5 < x < 1. Тогда 2x + 1 > 0 и

$$\log_{2x-1} \frac{x^4 + 2}{2x + 1} \ge 1 \Leftrightarrow 0 < \frac{x^4 + 2}{2x + 1} \le 2x - 1 \Leftrightarrow$$
$$\Leftrightarrow x^4 - 4x^2 + 3 \le 0 \Leftrightarrow 1 \le x^2 \le 3.$$

С учетом условия 0.5 < x < 1 получаем, что во втором случае решений нет.

Следовательно, решением первого неравенства данной в условии системы является множество $[\sqrt{3}; +\infty)$.

2. Неравенство $16^x - 3 \cdot 12^x - 4 \cdot 9^x < 0$ системы запишем в виде

$$\frac{16^{x}}{9^{x}} - 3 \cdot \frac{12^{x}}{9^{x}} - 4 < 0 \Leftrightarrow \left(\frac{4}{3}\right)^{2x} - 3 \cdot \left(\frac{4}{3}\right)^{x} - 4 < 0.$$

Пусть
$$\left(\frac{4}{3}\right)^x = t$$
 , где $t > 0$. Тогда нера-

венство примет вид: $t^2 - 3t - 4 < 0$ или (t-4)(t+1) < 0. Отсюда с учетом неравенства t > 0 получаем 0 < t < 4.

Выполняя обратную замену, имеем

$$0 < \left(\frac{4}{3}\right)^x < 4$$
. Отсюда $x < \log_{\frac{4}{3}} 4$.

3. Сравним числа $\log_{\frac{4}{3}} 4$ и $\sqrt{3}$. Так как

$$\log_{\frac{4}{3}} 4 > \log_{\frac{4}{3}} \frac{16}{9} = 2$$
, to $\log_{\frac{4}{3}} 4 > \sqrt{3}$.

Следовательно, решение системы нера-

венств есть множество $\left[\sqrt{3}; \log_{\frac{4}{3}} 4\right]$.

Omsem:
$$\left[\sqrt{3}; \log_{\frac{4}{3}} 4\right]$$
.

Тренировочные упражнения

Решите систему неравенств:

82.
$$\begin{cases} 9^x - 10 \cdot 3^x + 9 < 0, \\ \frac{2}{x} < 2 + \frac{3}{x - 1}. \end{cases}$$

83.
$$\begin{cases} \frac{1}{\sqrt[3]{32}} \cdot 8^{3x^2} > 2^{x+3}, \\ |\sqrt{2}x - 1| = \sqrt{2}x - 1. \end{cases}$$

84.
$$\begin{cases} 3^{x+2} + 9^{x+1} - 810 > 0, \\ \log_3^2 x + 4\log_3 x + 3 \ge 0. \end{cases}$$

85. (**МИОО**).
$$\begin{cases} 9^{x+1} + 3 \ge 28 \cdot 3^x, \\ \log_2(x^2 - 2x) \le 3. \end{cases}$$

86. (**MHOO**).
$$\begin{cases} 8 \cdot 4^{x} - 65 \cdot 2^{x} + 8 \le 0, \\ \log_{|x|}^{2}(x^{4}) + \log_{3}(x^{2}) \le 18. \end{cases}$$

87.
$$\begin{cases} (x^2 - 8x + 12)\sqrt{x^2 - 10x + 21} \ge 0, \\ 4^{x-1} + 2^{x-2} - \frac{3}{2} \ge 0. \end{cases}$$

88.
$$\begin{cases} \log_2 \frac{3x-2}{x-1} + 3\log_8 \frac{(x-1)^3}{3x-2} < 1, \\ \frac{\sqrt{8-2x-x^2}}{2x+9} \ge \frac{\sqrt{8-2x-x^2}}{x+10}. \end{cases}$$

$$\begin{cases} \frac{3 \cdot 64^{x} + 2^{x} - 70}{64^{x} - 2} \ge 3, \\ \log_{3}^{2}(x+3) - 3\log_{3}(x+3) + 2 \le 0. \end{cases}$$

90.
$$\begin{cases} \frac{\sqrt{2x^2 - 5x + 2}}{2x^2 + 6x} \le 0, \\ \frac{\log_{1}\log_{5}x^2}{9} < 5 \end{cases} \le \frac{\log_{1}\log_{9}x^2}{5}.$$

91.
$$\begin{cases} 2^{x^2+3x-3} - 2^{x^2+3x-5} - 96 \le 0, \\ \log_{\frac{1}{3}} \frac{2x-1}{x+2} > 1. \end{cases}$$

92.
$$\begin{cases} \frac{2^{x+1} - 45}{2^{x-1} - 4,4} \le 0, \\ \log_2(x-3) < \log_{0,5} \frac{1}{6-x}. \end{cases}$$

93.
$$\begin{cases} 2 \cdot 3^{2x+4} - 245 \cdot 3^x + 3 \le 0, \\ \log_2(x^2 + 4x + 5) > 2. \end{cases}$$

94.

$$\begin{cases} 5 \cdot 3^{2x} + 15 \cdot 5^{2x-1} \ge 8 \cdot 15^{x}, \\ \log_{2} \left(\log_{3} \left(\frac{x-1}{x+1} \right) \right) < \log_{\frac{1}{8}} \left(\log_{\frac{1}{9}} \left(\frac{x^{2} + 2x + 1}{x^{2} - 2x + 1} \right) \right). \end{cases}$$

95.
$$\begin{cases} \frac{(2^{x} - 32)(3^{x} + 27)}{x^{2} + 5x - 14} \le 0, \\ \log_{0.1}^{2} x - 1 \le 0. \end{cases}$$

96.
$$\begin{cases} \left(\frac{1}{3}\right)^{x} \ge x + 4, \\ \log_{2}\left(x^{2} - 4\right) - 3\log_{2}\frac{x + 2}{x - 2} > 2. \end{cases}$$

97.
$$\begin{cases} \frac{2^{4x+2}}{4^{x+1}} > 1, \\ 1 + \log_3(x-4) \le \log_3(x+21). \end{cases}$$

98.
$$\begin{cases} \frac{\log_3(1-2x-x^2)}{\log_{3-\sqrt{5}}(x+1+\sqrt{2})} \ge 0, \\ \frac{\log_{0,5}(1-2x)}{\log_2\left(\frac{8}{3}x\right)} \le -\frac{1}{2}. \end{cases}$$

99.
$$\begin{cases} \frac{7^{x} - 30}{7^{x-1} + 1} \le -14, \\ \log_{3}(1 - 2x) \ge \log_{3}(5x - 2). \end{cases}$$

100.
$$\begin{cases} 2^{x+2} - 2^{x+3} - 2^{x+4} > 5^{x+1} - 5^{x+2}, \\ \log_{\frac{1}{\sqrt{5}}} (-x^2 + 6x + 3) \ge -2. \end{cases}$$

101.
$$\begin{cases} 4 \cdot 3^{x+2} - 2 \cdot 5^{x+2} \le 5^{x+3} - 3^{x+3}, \\ \lg(x^2 - 2x - 2) \le 0. \end{cases}$$

102.
$$\begin{cases} 5^{2x+1} > 5^x + 4, \\ \log_3(x^2 - x) \ge \log_3(3x + 2). \end{cases}$$

103.
$$\begin{cases} 2 \cdot 3^{2x^2} + 4 \le 3^{x^2 + 2}, \\ \log_8(x^2 - 4x + 3) < 1. \end{cases}$$

104.
$$\begin{cases} 3^{x} < 1 + 12 \cdot 3^{-x}, \\ 2\ln \frac{1}{3x - 2} + \ln(5 - 2x) \ge 0. \end{cases}$$

105.
$$\begin{cases} \frac{x - 2\sqrt{x} - 8}{2^{x} - 4} \ge 0, \\ \frac{\log_{2} x - 5}{1 - 2\log_{x} 2} \ge 2\log_{2} x. \end{cases}$$

106.
$$\begin{cases} \frac{2x^2 - 11x + 15}{2^x - 6} < 0, \\ \frac{1}{2} \log_{\lg \frac{\pi}{12}} x^2 \ge \log_{\lg \frac{\pi}{12}} \sqrt{2x + 3}. \end{cases}$$

107.
$$\begin{cases} \left(\frac{1}{2}\right)^{\log_{\frac{1}{2}}(2x^2-3x+1)} < 1, \\ 2 + \frac{\log_{\frac{1}{2}}x}{1 + \log_{\frac{1}{2}}x} > \log_{\frac{1}{2}}x. \end{cases}$$

108.
$$\begin{cases} \frac{4^{x}}{2^{x} - 1} \le \frac{2^{x} + 12}{3}, \\ \log_{4}(3 \cdot 4^{x+1} - 8) < 2x + 1. \end{cases}$$

109.
$$\begin{cases} 2^{x} + 2^{|x|} \ge 2\sqrt{2}, \\ \log_{0.5}(6|x| - 3) \le \log_{0.5}(4 - x^{2}). \end{cases}$$

110.
$$\begin{cases} \frac{2^{x+1}-22}{2^x-2} \ge 1, \\ \log_5^2 x + |\log_5 x| \ge 6. \end{cases}$$

111.
$$\begin{cases} \frac{1}{4^{\sqrt{x}} - 3 \cdot 2^{\sqrt{x}} + 2} < \frac{1}{6}, \\ \log_{\frac{1}{x}} \left(\frac{5}{2} x - 1 \right) \ge -2. \end{cases}$$

112. (**MИОО**).
$$\begin{cases} 25^{x} - 30 \cdot 5^{x} + 125 \ge 0, \\ \log_{x}(x-1) \cdot \log_{x}(x+1) \le 0. \end{cases}$$

113. (МИОО)

$$\begin{cases} x^2 + 2^x + 36 \le 78 \cdot \log_3(x+3), \\ 12x + 2^x \ge 78 \cdot \log_3(x+3). \end{cases}$$

114. (**МИОО**).
$$\begin{cases} \log_{\log_x 2x} (5x - 2) \ge 0, \\ 15^x - 9 \cdot 5^x - 3^x + 9 \le 0. \end{cases}$$

115. (**MИОО**).
$$\begin{cases} \log_{\log_x 3x} (4x - 1) \ge 0, \\ 21^x - 9 \cdot 7^x - 3^x + 9 \le 0. \end{cases}$$

116. (**МИОО**).
$$\begin{cases} 6^{x} + \left(\frac{1}{6}\right)^{x} > 2, \\ 2^{x^{2}} \le 4 \cdot 2^{x}. \end{cases}$$

117. (**MHOO**).
$$\begin{cases} 7^{x} + \left(\frac{1}{7}\right)^{x} > 2, \\ 3^{x^{2}} \le 9 \cdot 3^{-x}. \end{cases}$$

118. (МИОО).

$$\begin{cases} \log_2(100 - x^2) \le 2 + \log_2(x+1), \\ \log_{0.3}(2 \mid x+5 \mid + \mid x-11 \mid -30) < 1. \end{cases}$$

119. (МИОО).

$$\begin{cases} \log_4 (81 - x^2) \le 2 + \log_4 (x + 4), \\ \log_{0,2} (3 \mid x + 4 \mid + \mid x - 10 \mid -38) < 1. \end{cases}$$

120. (Демовариант 2012).

$$\begin{cases} 4^{x} \le 9 \cdot 2^{x} + 22, \\ \log_{3}(x^{2} - x - 2) \le 1 + \log_{3} \frac{x + 1}{x - 2}. \end{cases}$$

121. (МИОО).

$$\begin{cases} 25^{x} + 3 \cdot 10^{x} - 4 \cdot 4^{x} > 0, \\ \log_{1 - \frac{x^{2}}{37}} (x^{2} - 12 \mid x \mid +37) - \log_{1 + \frac{x^{2}}{37}} (x^{2} - 12 \mid x \mid +37) \ge 0. \end{cases}$$

122. (МИОО).

$$\begin{cases} 16^{x} + 12^{x} - 2 \cdot 9^{x} < 0, \\ \log_{1 - \frac{x^{2}}{26}} (x^{2} - 10 \mid x \mid +26) - \log_{1 + \frac{x^{2}}{26}} (x^{2} - 10 \mid x \mid +26) \ge 0. \end{cases}$$

123. (МИОО).

$$\begin{cases} x^2 + 6^x + 4 \le 44 \cdot \log_5(x+3), \\ 4x + 6^x \ge 44 \cdot \log_5(x+3). \end{cases}$$

124. (**MHOO**).
$$\begin{cases} 4^{x+1} - 17 \cdot 2^x + 4 \le 0, \\ \log_{|x|}^2 x^2 + \log_2 x^2 \le 6. \end{cases}$$

125. (**MHOO**).
$$\begin{cases} 4\log_9(x+4,5) - 1 \ge 3^{4x^2-9}, \\ 3 - 4\log_9(x+4,5) \ge 3^{9-4x^2}. \end{cases}$$

125. (МИОО).
$$\begin{cases} 4\log_9(x+4,5) - 1 \ge 3^{4x^2-9}, \\ 3 - 4\log_9(x+4,5) \ge 3^{9-4x^2}. \end{cases}$$
126. (МИОО).
$$\begin{cases} \log_7(x^2 - 9) \le 1 \\ \frac{2x^2 + x - 28}{6^{x-6} + 5^{x-5} - 4} \le 0. \end{cases}$$

127. (**MHOO**).
$$\begin{cases} \log_7^2(x^2 + 4x - 20) \le x - 3 \\ \log_7^2(x^2 + 2x - 14) \le 3 - x. \end{cases}$$

$$\begin{cases} 5 \cdot 3^{2x^2 - 3x - 1} - 2 \cdot 3^{2x^2 - 3x} + 3^{2x^2 - 3x - 3} \ge -72, \\ \log_{\frac{1}{3}}(x + 1) \le \log_{3}(x - 2). \end{cases}$$

129.
$$\begin{cases} 4^{x^2-x} - 10 \cdot 2^{x^2} + 2^{2x+4} \ge 0, \\ \log_{9x} 3x + \log_{3x^2} 9x^2 \le \frac{5}{2} \end{cases}$$

130.

$$\begin{cases} (2+\sqrt{3})^{\log_2 x} + (2-\sqrt{3})^{\log_2(4x)} \le \frac{4}{2+\sqrt{3}}, \\ \log_{\frac{1}{3}}(x^2-4x+3) - 2\log_{\frac{1}{3}}(4-x) \ge 0. \end{cases}$$

131.
$$\begin{cases} \frac{9^{x+0.5}+1}{3-3^{2x}} \le 3^{2x}+1, \\ \frac{\log_3(1-2x-x^2)}{\log_{3-\sqrt{5}}(x+1+\sqrt{2})} \ge 0 \end{cases}$$

132. (МИОО

$$\begin{cases} (9 \cdot 9^{x} - 10 \cdot 3^{x} + 1) \cdot \log_{x+1} |x - 3,5| \ge 0, \\ 9^{x+1} + \log_{x+1} |x - 3,5| + 1 \ge 10 \cdot 3^{x}. \end{cases}$$

133. (МИОО).

$$\begin{cases} 4^{x+1} - 33 \cdot 2^x + 8 \le 0, \\ 2\log_2 \frac{x-1}{2x+3} + \log_2 (2x+3)^2 \ge 2. \end{cases}$$

134. (МИОО).

$$\begin{cases} 2^{x} + 16 \cdot 2^{-x} \ge 17, \\ 2\log_{9}(4x^{2} + 1) \le \log_{3}(3x^{2} + 4x + 1). \end{cases}$$

135. (**МИОО**).
$$\begin{cases} 4^{x} - 6 \cdot 2^{x} + 8 \ge 0, \\ \log_{3} \frac{2x^{2} + 3x - 5}{x + 1} \le 1. \end{cases}$$

136. (**MHOO**).
$$\begin{cases} 4^{x-3} + 2^x \left(\frac{x}{8} - 2\right) - 16x \le 0, \\ 7^x - 7^{1-x} + 6 > 0. \end{cases}$$
145. (**MHOO**).
$$\begin{cases} 3 \cdot 9^x - 28 \cdot 3^x + 9 \le 0, \\ \log_{x^2}(x-1)^2 \le 1. \end{cases}$$

137. (**MHOO**).
$$\begin{cases} \log_{(x-1)^2} (x^2 - 4x + 4) < 0, \\ \log_2 (x^2 - 3x + 3) > 1. \end{cases}$$

138. (МИОО).

$$\begin{cases} \log_{5x} x^2 + \log_{x^2} 5x \le 2, \\ \log_{x-3}^4 (x^2 - 17) + \log_{x^2 - 17}^2 (x - 3) - \log_{5x} 25 > 79. \end{cases}$$

139. (МИОО).

$$\begin{cases} 7^{x-1} + 7^x + 7^{x+1} > 171, \\ \log_3 \frac{1}{x} + \log_3 (x^2 + 3x - 9) \le \\ \le \log_3 \left(x^2 + 3x + \frac{1}{x} - 10 \right). \end{cases}$$

140. (МИОО).

$$\begin{cases} 9^{x-3} - 9^{x-2} + 9^{x-1} > 511, \\ \log_7 \frac{3}{x} + \log_7 (x^2 - 7x + 11) \le \\ \le \log_7 \left(x^2 - 7x + \frac{3}{x} + 10 \right). \end{cases}$$

141. (МИОО).

$$\begin{cases} 9^{x+1} - 244 \cdot 3^{x} + 27 \le 0, \\ 2\log_{2} \frac{x-1}{10x+11} + \log_{2} (10x+11)^{2} \ge 2. \end{cases}$$

142. (МИОО).

$$\begin{cases} 4^{x} - 12 \cdot 2^{x} + 32 \ge 0, \\ \log_{x}(x - 2) \cdot \log_{x}(x + 2) \le 0. \end{cases}$$

143. (**MИОО**).
$$\begin{cases} 17 \cdot \log_{17}(x+14) \ge x^2 + 8, \\ 17 \cdot \log_{17}(x+14) \le 6x - 1. \end{cases}$$

144. (**МИОО**).
$$\begin{cases} 2^{x} + \frac{16}{2^{x}} \ge 10, \\ \log_{x+2}(x-2) \le 0. \end{cases}$$

145. (**МИОО**).
$$\begin{cases} 3 \cdot 9^x - 28 \cdot 3^x + 9 \le 0, \\ \log_{x^2} (x - 1)^2 \le 1. \end{cases}$$

146. (**МИОО**).
$$\begin{cases} 13^{x-6} + \ln^2(x-7) \ge 13, \\ 7 + \sqrt{13-x} \ge 7^{x-12}. \end{cases}$$

147. (**MHOO**).
$$\begin{cases} \sqrt{x+3} + \log_2(x+5) \ge 0, \\ 8 \cdot 4^x - 33 \cdot 2^x + 4 \ge 0. \end{cases}$$

148. (МИОО).

$$\begin{cases} \frac{2 \cdot 81^{x} + 3^{x} - 87}{81^{x} - 3} \ge 2, \\ \log_{2}^{2}(x+4) - 5\log_{2}(x+4) + 6 \le 0. \end{cases}$$

149. (МИОО).

$$\begin{cases} \frac{9 \cdot 2^{x} - 24}{2^{x} - 4} \ge 2^{x} + 4, \\ \log_{2}(x+1) \ge \frac{\log_{2}(x+1)}{\log_{2}(x+1) - 1}. \end{cases}$$

150. (**MИОО**).
$$\begin{cases} 9^{x} - 4 \cdot 3^{x} + 3 \ge 0, \\ \log_{\frac{2x^{2} + 3x + 1}{3x + 1}} |x| \le 0. \end{cases}$$

151.
$$\begin{cases} (x-1)\lg 2 + \lg(2^{x+1}+1) < \lg(7 \cdot 2^x + 12), \\ \log_x(x+2) > 2. \end{cases}$$

152.
$$\begin{cases} \frac{x^2 + 4}{x^2 - 16x + 64} > 0, \\ \lg \sqrt{x + 7} > \lg(x - 5) - 2\lg 2. \end{cases}$$

153.
$$\begin{cases} \frac{\sqrt{(x-8)(2-x)}}{\log_{0,3}\left(\frac{10}{7}(\log_2 5 - 1)\right)} \ge 0, \\ 2^{x-3} - 31 > 0. \end{cases}$$

154.
$$\begin{cases} \frac{\sqrt{\log_2^2 x - 3\log_2 x + 2}}{\log_5 \left(\frac{1}{3}(\log_3 5 - 1)\right)} \ge 0, \\ x - \sqrt{x} - 2 \ge 0. \end{cases}$$

155.
$$\begin{cases} \log_{x+3}(x^2 - x) < 1, \\ \log_{x^2 - \frac{3}{2}x}(3 - 2^x) > 0. \end{cases}$$

156.
$$\begin{cases} \log_{3-2x} x < 2, \\ \log_{x} (\log_{2} (4^{x} - 6)) \le 1. \end{cases}$$

157.
$$\begin{cases} 3^{\log \frac{2}{3}x} + x^{\log_3 x} > 2\sqrt[4]{3}, \\ \log_2^2 x + 6 \ge 5\log_2 x. \end{cases}$$

158.
$$\begin{cases} 1 + \lg x^6 \cdot \log_5 x > \log_5 x^2 + \lg x^3, \\ \log_{\log_2\left(\frac{x}{2}\right)}(x^2 - 10x + 22) > 0. \end{cases}$$

159. Найдите все натуральные значения x, удовлетворяющие системе неравенств

$$\begin{cases} \frac{x}{x-3} + \frac{x-5}{x} < \frac{2x}{3-x}, \\ \log_{\sqrt{2}}(x-1) < 4. \end{cases}$$

160. Найдите все целые значения x, удовлетворяющие системе неравенств

$$\begin{cases} \frac{x+8}{x+2} > 2, \\ \lg(x-1) < 1 \end{cases}$$

Ответы

1. a < b. **2.** a > b. **3.** a > b. **4.** a < b. **5.** a < b. **6.** a = b. **7.** a < b. **8.** a < b. **9.** a > b. **10.** a > b. **11.** a > b. **12.** a > b. a < b. 14. a > b. 15. **16.** a > b. **17.** a > b. **18.** a > b. **19.** a < b. **20.** a > b. **21.** a = b. **22.** a > b. **23.** a < b. **24.** a < b. **25.** a > b. **26.** a < b. **27.** a < b. **28. a)** a > b. Указание. $\log_{0.5} 5 > \log_{0.6} 5 >$ $> \log_{0.6} 6$. **б)** a < b. Указание. $\log_{5} 0.7 >$ $> \log_5 0.6 > \log_4 0.6$. **B)** a > b. Указание. $\log_{0.6} 0.7 > \log_{0.5} 0.7 > \log_{0.5} 0.8$. Γ) a < b. Указание. Из неравенства $\log_2 3 > \log_3 4 >$ > 0 примера 21 получаем $\frac{1}{\log_3 3} < \frac{1}{\log_3 4}$ и $\log_3 2 < \log_4 3$. **29.** a > b. Указание. Сравните разность чисел с нулем. **30.** a = b . Указание. Использовать тождество $a^{\log_c b} = b^{\log_c a}$. **31.** a = b. **32.** a > b. Указание. Использовать «укрупнение» чисел. **33.** a > b. **34.** a > b. Указание. Использовать неравенство Коши. **35.** a > b. **36.** a > b. **37.** a < b. **38.** a > b. **39.** a > b. **40.** a > b . **41.** $[-1;1) \cup (3;5]$.

42.
$$(3;3,5] \cup [5;+\infty)$$
. **43.** $\left[-\frac{1}{3};0\right] \cup (0;1]$.

44.
$$[-98;2) \cup (2;102]$$
.

45.
$$\left(-\frac{1}{2};0\right) \cup \left(\frac{3}{2};2\right)$$
. **46.** $[2;+\infty)$.

47.
$$\left(-5; -\frac{7\pi}{6}\right] \cup \left[\frac{\pi}{6}; \frac{5\pi}{6}\right]$$
. **48.** $(-\infty; 0]$.

49.
$$(-\infty;1)$$
. **50.** $\left(-\infty;\log_7\frac{16}{3}\right]$.

51.
$$(-\infty, 1] \cup (\log_2 4, +\infty)$$
.

52.
$$(-1; 2\log_3 5] \cup (3; +\infty)$$
. **53.** $\left(1; \log_{\frac{7}{5}} 3\right)$.

54.
$$\left(-\infty; \log_{\frac{3}{5}} 3\right) \cup (1; +\infty)$$
. **55.** $\left(-\infty; \log_{\frac{4}{3}} 3\right]$.

56.
$$(-\infty;1]$$
. **57.** $(-\infty;-1] \cup [1-\sqrt{2};1+\sqrt{2}] \cup$

$$\cup[3;+\infty)$$
. **58.** $\left[\frac{3-\sqrt{5}}{2};\frac{3+\sqrt{5}}{2}\right]$.

59.
$$\left[\log_{42}\frac{1}{63};\log_{\frac{7}{6}}\frac{9}{7}\right]$$
. **60.** $\left[\log_{\frac{4}{3}}\frac{9}{10};+\infty\right)$.

61.
$$\left(-\infty; \frac{1+3\log_3 11}{2+\log_3 11}\right)$$
. **62.** $(-\infty; -2) \cup (-2; 0)$.

63.
$$\left(-\infty; \log_{\frac{2}{3}} 3\right) \cup \left(-0.5; 0.5\right)$$
. **64.** 0; 2.

65.
$$\left(-\frac{2}{3}; 2 - \sqrt{6}\right] \cup \left[2 + \sqrt{6}; +\infty\right).$$

66.
$$\left(\frac{2}{3}; \frac{5+\sqrt{34}}{9}\right]$$
. **67.** $(-1; 0) \cup (4; 5]$.

68. -1. **69.**
$$(-\infty; -2) \cup (-2; 2 - \sqrt{15}) \cup (6; +\infty)$$
. **70.** $(0; 1) \cup (1; 2)$

71.
$$(-\infty; -1 - \sqrt{2}) \cup (-1 + \sqrt{2}; 1) \cup (1; +\infty)$$
.

72.
$$(\sqrt{2}+1;1+\sqrt{3}]$$
. 73. $\frac{7}{4}$. 74
 $(-\infty;-2-\sqrt{3}+\sqrt{5})\cup(-3;-2-\sqrt{3}-\sqrt{5})\cup(-2+\sqrt{3}-\sqrt{5};-1)\cup\cup(-2+\sqrt{3}+\sqrt{5};+\infty)$.

75.
$$(-\infty; 0)$$
. **76.** $(-\infty; -3) \cup (3; +\infty)$.

77.
$$(-7, -6) \cup [-3, 0) \cup (0, 1) \cup (1, 4]$$
.

78.
$$[-9;-4) \cup (-4;-1) \cup \left(-\frac{1}{81};0\right)$$
.

79. $(-\log_2 6; -\log_2 3]$.

80. $(-\infty; -2] \cup [0; -2 + \lg 101)$. Указание. Воспользуйтесь тождеством $x = \log_5 5^x$.

81. 3. **82.**
$$1 < x < 2$$
. **83.** $x > \frac{7}{9}$. **84.** $x > 2$.

85.
$$\{-2\} \cup (2;4]$$
. **86.** $[-3;-1) \cup (-1;0) \cup (0;1) \cup (1;3]$. **87.** $[1;2] \cup \{3\} \cup [7;+\infty)$.

88.
$$\left(1-\sqrt{2};\frac{2}{3}\right)\cup\{2\}$$
. **89.** $\left[0;\frac{1}{6}\right)\cup\{6\}$.

90.
$$(-3; -1) \cup \{2\}$$
. **91.** $(0,5; 1)$.

$$[-4; -2-\sqrt{3}) \cup (-2+\sqrt{3}; \log_3 1,5].$$

94.
$$x < -2$$
. **95.** (2; 5]. **96.** $(-\infty; -2)$.

97.
$$(4;16,5]$$
. **98.** $\left[\frac{1}{6};\frac{3}{8}\right]$. **99.** $\left(\frac{2}{5};\frac{3}{7}\right]$.

100.
$$(0; 3-\sqrt{7}] \cup [3+\sqrt{7}; 3+2\sqrt{3})$$
.

101.
$$[-1;1-\sqrt{3}) \cup (1+\sqrt{3};3]$$
. **102.** $[2+\sqrt{6};+\infty)$.

103.
$$(-1;1)$$
. **104.** $\left(\frac{2}{3}; \frac{5+\sqrt{34}}{9}\right]$.

105.
$$\left(0; \frac{1}{2}\right] \cup (1; 2)$$
. **106.** $[-1; 0) \cup (0; 2, 5) \cup$

$$\cup (\log_2 6; 3) \cdot 107 \cdot \left(0; \frac{1}{4}\right) \cup \left(1; \frac{3}{2}\right)$$

108.
$$\left(\log_4 \frac{2}{3}; 0\right) \cup \left[\log_2 \frac{3}{2}; 2\right]$$
.

109.
$$(-2; \log_2(\sqrt{2} - 1)] \cup [1; 2)$$
.

110.
$$\left(0; \frac{1}{25}\right] \cup [25; +\infty)$$
.

111.
$$\left[\frac{1}{2};1\right] \cup (4;+\infty)$$
. 112. 2. 113. 6.

114.
$$(0,4;0,5) \cup (1;2]$$
. **115.** $\left(\frac{1}{4};\frac{1}{3}\right) \cup (1;2]$.

116.
$$[-1;0) \cup (0;2]$$
. **117.** $[-2;0) \cup (0;1]$.

121. 6 . **122.** -5 . **123.** 2. *Указание*. Второе неравенство привести к виду $-4x-6^x \le \le -44 \cdot \log_5(x+3)$ и сложить левые и правые части неравенств. **124.** $[-2;-1) \cup \cup (-1;0) \cup (0;1) \cup (1;2]$. **125.** -1,5. *Указание*. См. указание к №123. Учесть далее, что $3^{4x^2-9}-2+3^{9-4x^2}=\left(3^{2x^2-4,5}-3^{4,5-24x^2}\right)^2$. **126.** $\{-4\} \cup [3,5;4]$. *Указание*. Учесть, что $y=6^{x-6}$ и $y=5^{x-5}$ – возрастающие функ-

ции. **127.** 3. **128.**
$$\left[\frac{1+\sqrt{13}}{2}; 2,5\right]$$
. **129.**

$$\left(0;\frac{1}{27\sqrt{3}}\right] \cup \left(\frac{1}{9};\frac{1}{\sqrt{3}}\right) \cup \left[1;1+\sqrt{2}\right] \cup \left[3;+\infty\right).$$

130.
$$[0,25;1)$$
. **131.** $[-2;-\sqrt{2})\cup\{0\}$.

132.
$$(0;2,5] \cup [4,5;+\infty)$$
.

133.
$$[-2; -1,5) \cup \{3\}$$
 . **134.** 0; 4.

135.
$$\left(-\frac{5}{2};-2\right] \cup \{2\}$$
. **136.** (0;7]. Указание.

Привести первое неравенство к виду $(2^{x-7}-1)(2^x+8x) \le 0$ и рассмотреть его на множестве решений первого неравенства

системы. **137.**
$$\left(0; \frac{3-\sqrt{5}}{2}\right) \cup \left(\frac{3+\sqrt{5}}{2}; 3\right)$$
.

138. 5. **139.** $[2; +\infty)$. *Указание*. Учесть, что на ОДЗ неравенство $\log_3 a + \log_3 b \le \log_3 (a+b-1)$ равносильно неравенству $(a-1)(b-1) \le 0$. **140.** $[5; +\infty)$.

141.
$$[-2;-1,1) \cup \{3\}$$
. **142.** 3. **143.** 3.

144. 3. **145.**
$$(-1;0) \cup (0;0,5] \cup (1;2]$$
.

146.
$$(7;13]$$
. **147.** $\{-3\} \cup [2;+\infty)$.

148.
$$\left[0; \frac{1}{4}\right] \cup \{4\}$$
. **149.** 0; 3. **150.** $\left(-\frac{1}{3}; 0\right) \cup \{1\}$.

151. (1;2). **152.** (5;8)
$$\cup$$
 (8;29). **153.** 8. **154.**

4. **155.**
$$(-3;-2) \cup \left(-1;-\frac{1}{2}\right) \cup \left(\frac{3}{2};\log_2 3\right)$$
.

157.
$$0 < x < \frac{1}{\sqrt{3}}$$
; $\sqrt{3} < x \le 4$; $x \ge 8$.

158.
$$(3; 5 - \sqrt{3}) \cup (7; +\infty)$$
.

159. 2. **160.** 2; 3.

Список и источники литературы

- **1.** 3000 конкурсных задач по математике. – М.: Рольф, 1997. – 608 с.
- **2.** ЕГЭ-2012. Математика: типовые экзаменационные варианты: 30 вариантов / под ред. А.Л. Семенова, И.В. Ященко. М.: Национальное образование, 2011. 192 с. (ЕГЭ-2012. ФИПИ школе).
- **3.** ЕГЭ 2012. Математика. Типовые тестовые задания /под ред. А.Л. Семенова, И.В. Ященко. М.: Издательство «Экзамен», 2012. 51 с.
- **4.** Корянов А.Г., Прокофьев А.А. Математика ЕГЭ 2011. Типовые задания СЗ. Методы решения неравенств с одной переменной. http://alexlarin.net/ege/2011/C3-2011.pdf
- **5.** Подготовка к ЕГЭ по математике в 2012 году. Методические указания. /Ященко И.В., Шестаков С.А., Трепалин А.С., Захаров П.И. М.: МЦНМО, 2012. 208 с.
- **6.** Потапов М.К., Олехник С.Н., Нестеренко Ю. В. Конкурсные задачи по математике: Справ. пособие. М.: Наука. Гл. ред. физ.-мат. лит., 1992. 40 с.
- 7. Самое полное издание типовых вариантов заданий ЕГЭ: 2012: Математика / авт.-сост. И.Р. Высоцкий, Д.Д. Гущин, П.И. Захаров и др.; под ред. А.Л. Семенова, И.В. Ященко. М.: АСТ: Астрель, 2011. 93 с. (Федеральный институт педагогических измерений).
- 8. Сборник задач по математике для поступающих во втузы (с решениями). В 2-х кн. Кн. 1. Алгебра: Учеб. пособие / В.К. Егерев, В.В. Зайцев, Б.А. Кордемский и др.; под ред. М.И. Сканави. 7-е изд., перераб. и доп. М.: Высш. шк., 1994. 528 с.
- **9.** Шестаков С.А., Захаров П.И. ЕГЭ 2011. Математика. Задача СЗ / Под ред. А.Л. Семенова, И.В. Ященко. М.: МЦНМО, 2011.
- 10. http://alexlarin.net сайт по оказанию информационной поддержки студентам и абитуриентам при подготовке к ЕГЭ, поступлению в ВУЗы и изучении различных разделов высшей математики.
- 11. http://eek.diary.ru/ сайт по оказанию помощи абитуриентам, студентам, учителям по математике.